An effective $p$-adic analogue of a theorem of Thue. II.~The greatest prime factor of a binary form
Matematika, Tome 17 (1973) no. 3, pp. 77-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MAT_1973_17_3_a3,
     author = {J. Coates},
     title = {An effective $p$-adic analogue of a theorem of {Thue.} {II.~The} greatest prime factor of a binary form},
     journal = {Matematika},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {1973},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAT_1973_17_3_a3/}
}
TY  - JOUR
AU  - J. Coates
TI  - An effective $p$-adic analogue of a theorem of Thue. II.~The greatest prime factor of a binary form
JO  - Matematika
PY  - 1973
SP  - 77
EP  - 89
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAT_1973_17_3_a3/
LA  - ru
ID  - MAT_1973_17_3_a3
ER  - 
%0 Journal Article
%A J. Coates
%T An effective $p$-adic analogue of a theorem of Thue. II.~The greatest prime factor of a binary form
%J Matematika
%D 1973
%P 77-89
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAT_1973_17_3_a3/
%G ru
%F MAT_1973_17_3_a3
J. Coates. An effective $p$-adic analogue of a theorem of Thue. II.~The greatest prime factor of a binary form. Matematika, Tome 17 (1973) no. 3, pp. 77-89. http://geodesic.mathdoc.fr/item/MAT_1973_17_3_a3/