Smoothly equivalent real analytic proper G-mainfolds are subanalytically equivalent.
Mathematische Annalen, Tome 306 (1996) no. 3, pp. 647-674.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : -equivariant, -homotopic, Lie group, diffeomorphism, real analytic manifolds, subanalytic, simple-homotopy theory, equivariant Whitehead torsion
@article{MAN_1996__306_3_165473,
     author = {S\"oren Illmann},
     title = {Smoothly equivalent real analytic proper {G-mainfolds} are subanalytically equivalent.},
     journal = {Mathematische Annalen},
     pages = {647--674},
     publisher = {mathdoc},
     volume = {306},
     number = {3},
     year = {1996},
     zbl = {0863.57029},
     url = {http://geodesic.mathdoc.fr/item/MAN_1996__306_3_165473/}
}
TY  - JOUR
AU  - Sören Illmann
TI  - Smoothly equivalent real analytic proper G-mainfolds are subanalytically equivalent.
JO  - Mathematische Annalen
PY  - 1996
SP  - 647
EP  - 674
VL  - 306
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAN_1996__306_3_165473/
ID  - MAN_1996__306_3_165473
ER  - 
%0 Journal Article
%A Sören Illmann
%T Smoothly equivalent real analytic proper G-mainfolds are subanalytically equivalent.
%J Mathematische Annalen
%D 1996
%P 647-674
%V 306
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAN_1996__306_3_165473/
%F MAN_1996__306_3_165473
Sören Illmann. Smoothly equivalent real analytic proper G-mainfolds are subanalytically equivalent.. Mathematische Annalen, Tome 306 (1996) no. 3, pp. 647-674. http://geodesic.mathdoc.fr/item/MAN_1996__306_3_165473/