Invariant differential operators are linear combinations of symmetric positive ones.
Mathematische Annalen, Tome 297 (1993) no. 3, pp. 535-538.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : line bundle, -equivariant differential operators, complexification, tangent space, symmetric algebra, Hermitian symmetric spaces
@article{MAN_1993__297_3_165144,
     author = {Anton Deitmar},
     title = {Invariant differential operators are linear combinations of symmetric positive ones.},
     journal = {Mathematische Annalen},
     pages = {535--538},
     publisher = {mathdoc},
     volume = {297},
     number = {3},
     year = {1993},
     zbl = {0810.22006},
     url = {http://geodesic.mathdoc.fr/item/MAN_1993__297_3_165144/}
}
TY  - JOUR
AU  - Anton Deitmar
TI  - Invariant differential operators are linear combinations of symmetric positive ones.
JO  - Mathematische Annalen
PY  - 1993
SP  - 535
EP  - 538
VL  - 297
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAN_1993__297_3_165144/
ID  - MAN_1993__297_3_165144
ER  - 
%0 Journal Article
%A Anton Deitmar
%T Invariant differential operators are linear combinations of symmetric positive ones.
%J Mathematische Annalen
%D 1993
%P 535-538
%V 297
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAN_1993__297_3_165144/
%F MAN_1993__297_3_165144
Anton Deitmar. Invariant differential operators are linear combinations of symmetric positive ones.. Mathematische Annalen, Tome 297 (1993) no. 3, pp. 535-538. http://geodesic.mathdoc.fr/item/MAN_1993__297_3_165144/