Riemannian manifolds whose Laplacians have purely continuous spectrum.
Mathematische Annalen, Tome 293 (1992) no. 4, pp. 143-162.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : continuous spectrum, Riemannian manifold, Laplacian
@article{MAN_1992__293_4_164951,
     author = {Harold Donnelly and Nicola Garafalo},
     title = {Riemannian manifolds whose {Laplacians} have purely continuous spectrum.},
     journal = {Mathematische Annalen},
     pages = {143--162},
     publisher = {mathdoc},
     volume = {293},
     number = {4},
     year = {1992},
     zbl = {0735.58033},
     url = {http://geodesic.mathdoc.fr/item/MAN_1992__293_4_164951/}
}
TY  - JOUR
AU  - Harold Donnelly
AU  - Nicola Garafalo
TI  - Riemannian manifolds whose Laplacians have purely continuous spectrum.
JO  - Mathematische Annalen
PY  - 1992
SP  - 143
EP  - 162
VL  - 293
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAN_1992__293_4_164951/
ID  - MAN_1992__293_4_164951
ER  - 
%0 Journal Article
%A Harold Donnelly
%A Nicola Garafalo
%T Riemannian manifolds whose Laplacians have purely continuous spectrum.
%J Mathematische Annalen
%D 1992
%P 143-162
%V 293
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAN_1992__293_4_164951/
%F MAN_1992__293_4_164951
Harold Donnelly; Nicola Garafalo. Riemannian manifolds whose Laplacians have purely continuous spectrum.. Mathematische Annalen, Tome 293 (1992) no. 4, pp. 143-162. http://geodesic.mathdoc.fr/item/MAN_1992__293_4_164951/