Multiplicity-free complex manifolds.
Mathematische Annalen, Tome 286 (1990) no. 1-3, pp. 261-280.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : coisotropic action, Hamiltonian actions, Lie group, symplectic manifold, noncommutative complete integrability, spherical embedding, equivalence, group representations, spaces of holomorphic functions, spaces of sections of holomorphic line bundles, multiplicity-free
@article{MAN_1990__286_1-3_164638,
     author = {A.T. Huckleberry and T. Wurzbacher},
     title = {Multiplicity-free complex manifolds.},
     journal = {Mathematische Annalen},
     pages = {261--280},
     publisher = {mathdoc},
     volume = {286},
     number = {1-3},
     year = {1990},
     zbl = {0765.32016},
     url = {http://geodesic.mathdoc.fr/item/MAN_1990__286_1-3_164638/}
}
TY  - JOUR
AU  - A.T. Huckleberry
AU  - T. Wurzbacher
TI  - Multiplicity-free complex manifolds.
JO  - Mathematische Annalen
PY  - 1990
SP  - 261
EP  - 280
VL  - 286
IS  - 1-3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAN_1990__286_1-3_164638/
ID  - MAN_1990__286_1-3_164638
ER  - 
%0 Journal Article
%A A.T. Huckleberry
%A T. Wurzbacher
%T Multiplicity-free complex manifolds.
%J Mathematische Annalen
%D 1990
%P 261-280
%V 286
%N 1-3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAN_1990__286_1-3_164638/
%F MAN_1990__286_1-3_164638
A.T. Huckleberry; T. Wurzbacher. Multiplicity-free complex manifolds.. Mathematische Annalen, Tome 286 (1990) no. 1-3, pp. 261-280. http://geodesic.mathdoc.fr/item/MAN_1990__286_1-3_164638/