On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I.
Mathematische Annalen, Tome 281 (1988) no. 4, pp. 633-670
Cet article a éte moissonné depuis la source European Digital Mathematics Library
Mots-clés :
coadjoint orbit, real polarization, symplectic manifold, quantizable functions, homogeneous line bundle, differential operators, canonical symplectic form, Weyl quantization, integral orbits
@article{MAN_1988__281_4_164443,
author = {Niels Vigand Pedersen},
title = {On the {Symplectic} {Structure} of {Coadjoint} {Orbits} of {(Solvable)} {Lie} {Groups} and {Applications.} {I.}},
journal = {Mathematische Annalen},
pages = {633--670},
year = {1988},
volume = {281},
number = {4},
zbl = {0629.22004},
url = {http://geodesic.mathdoc.fr/item/MAN_1988__281_4_164443/}
}
TY - JOUR AU - Niels Vigand Pedersen TI - On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I. JO - Mathematische Annalen PY - 1988 SP - 633 EP - 670 VL - 281 IS - 4 UR - http://geodesic.mathdoc.fr/item/MAN_1988__281_4_164443/ ID - MAN_1988__281_4_164443 ER -
Niels Vigand Pedersen. On the Symplectic Structure of Coadjoint Orbits of (Solvable) Lie Groups and Applications. I.. Mathematische Annalen, Tome 281 (1988) no. 4, pp. 633-670. http://geodesic.mathdoc.fr/item/MAN_1988__281_4_164443/