A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of Genus 2.
Mathematische Annalen, Tome 263 (1983), pp. 87-144
Mots-clés :
simplest hyperbolic Kac-Moody algebra, construction, root multiplicities, Siegel modular forms, lifting of invariant characters, Saito-Kurokawa conjecture, Weyl-Kac denominator formula, product expansion for theta function
@article{MAN_1983__263_163734,
author = {Alex J. Feingold and Igor B. Frenkel},
title = {A {Hyperbolic} {Kac-Moody} {Algebra} and the {Theory} of {Siegel} {Modular} {Forms} of {Genus} 2.},
journal = {Mathematische Annalen},
pages = {87--144},
year = {1983},
volume = {263},
zbl = {0489.17008},
url = {http://geodesic.mathdoc.fr/item/MAN_1983__263_163734/}
}
Alex J. Feingold; Igor B. Frenkel. A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of Genus 2.. Mathematische Annalen, Tome 263 (1983), pp. 87-144. http://geodesic.mathdoc.fr/item/MAN_1983__263_163734/