A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of Genus 2.
Mathematische Annalen, Tome 263 (1983), pp. 87-144
Voir la notice de l'article provenant de la source European Digital Mathematics Library
Mots-clés :
simplest hyperbolic Kac-Moody algebra, construction, root multiplicities, Siegel modular forms, lifting of invariant characters, Saito-Kurokawa conjecture, Weyl-Kac denominator formula, product expansion for theta function
@article{MAN_1983__263_163734,
author = {Alex J. Feingold and Igor B. Frenkel},
title = {A {Hyperbolic} {Kac-Moody} {Algebra} and the {Theory} of {Siegel} {Modular} {Forms} of {Genus} 2.},
journal = {Mathematische Annalen},
pages = {87--144},
publisher = {mathdoc},
volume = {263},
year = {1983},
zbl = {0489.17008},
url = {http://geodesic.mathdoc.fr/item/MAN_1983__263_163734/}
}
TY - JOUR AU - Alex J. Feingold AU - Igor B. Frenkel TI - A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of Genus 2. JO - Mathematische Annalen PY - 1983 SP - 87 EP - 144 VL - 263 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAN_1983__263_163734/ ID - MAN_1983__263_163734 ER -
Alex J. Feingold; Igor B. Frenkel. A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forms of Genus 2.. Mathematische Annalen, Tome 263 (1983), pp. 87-144. http://geodesic.mathdoc.fr/item/MAN_1983__263_163734/