Rings for which Every Cyclic Module is Quasi-Projective.
Mathematische Annalen, Tome 189 (1970), pp. 311-316.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : associative rings
@article{MAN_1970__189_162085,
     author = {A. KOEHLER},
     title = {Rings for which {Every} {Cyclic} {Module} is {Quasi-Projective.}},
     journal = {Mathematische Annalen},
     pages = {311--316},
     publisher = {mathdoc},
     volume = {189},
     year = {1970},
     zbl = {0198.05602},
     url = {http://geodesic.mathdoc.fr/item/MAN_1970__189_162085/}
}
TY  - JOUR
AU  - A. KOEHLER
TI  - Rings for which Every Cyclic Module is Quasi-Projective.
JO  - Mathematische Annalen
PY  - 1970
SP  - 311
EP  - 316
VL  - 189
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAN_1970__189_162085/
ID  - MAN_1970__189_162085
ER  - 
%0 Journal Article
%A A. KOEHLER
%T Rings for which Every Cyclic Module is Quasi-Projective.
%J Mathematische Annalen
%D 1970
%P 311-316
%V 189
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAN_1970__189_162085/
%F MAN_1970__189_162085
A. KOEHLER. Rings for which Every Cyclic Module is Quasi-Projective.. Mathematische Annalen, Tome 189 (1970), pp. 311-316. http://geodesic.mathdoc.fr/item/MAN_1970__189_162085/