Reduction to Multiplicity Less Than p in a p-Cyclic Extension of a Two Dimensional Regular Local Ring (p = characteristic of the residue field).
Mathematische Annalen, Tome 154 (1964), pp. 28-55.

Voir la notice de l'article provenant de la source European Digital Mathematics Library

Mots-clés : algebraic geometry
@article{MAN_1964__154_161145,
     author = {SH. ABHYANKAR},
     title = {Reduction to {Multiplicity} {Less} {Than} p in a {p-Cyclic} {Extension} of a {Two} {Dimensional} {Regular} {Local} {Ring} (p = characteristic of the residue field).},
     journal = {Mathematische Annalen},
     pages = {28--55},
     publisher = {mathdoc},
     volume = {154},
     year = {1964},
     zbl = {0121.37902},
     url = {http://geodesic.mathdoc.fr/item/MAN_1964__154_161145/}
}
TY  - JOUR
AU  - SH. ABHYANKAR
TI  - Reduction to Multiplicity Less Than p in a p-Cyclic Extension of a Two Dimensional Regular Local Ring (p = characteristic of the residue field).
JO  - Mathematische Annalen
PY  - 1964
SP  - 28
EP  - 55
VL  - 154
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAN_1964__154_161145/
ID  - MAN_1964__154_161145
ER  - 
%0 Journal Article
%A SH. ABHYANKAR
%T Reduction to Multiplicity Less Than p in a p-Cyclic Extension of a Two Dimensional Regular Local Ring (p = characteristic of the residue field).
%J Mathematische Annalen
%D 1964
%P 28-55
%V 154
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAN_1964__154_161145/
%F MAN_1964__154_161145
SH. ABHYANKAR. Reduction to Multiplicity Less Than p in a p-Cyclic Extension of a Two Dimensional Regular Local Ring (p = characteristic of the residue field).. Mathematische Annalen, Tome 154 (1964), pp. 28-55. http://geodesic.mathdoc.fr/item/MAN_1964__154_161145/