Mots-clés : taylor polynomial
@article{MAIS_2023_30_1_a2,
author = {A. N. Morozov},
title = {On computational constructions in function spaces},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {28--38},
year = {2023},
volume = {30},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2023_30_1_a2/}
}
A. N. Morozov. On computational constructions in function spaces. Modelirovanie i analiz informacionnyh sistem, Tome 30 (2023) no. 1, pp. 28-38. http://geodesic.mathdoc.fr/item/MAIS_2023_30_1_a2/
[1] A. P. Calderon and A. Zygmund, “Local Properties of Solution of Elliptic Partial Differential Equation”, Studia Mathematica, 20:2, 171–225 | MR | Zbl
[2] A. N. Morozov, “Numerical Modeling Tools and S-Derivatives”, Modeling and analysis of inform. systems, 29:1, 20–29 | DOI | MR | Zbl
[3] A. N. Morozov, “Calculation of Derivatives in the $L_p$ Spaces where $1leq pleq infty$”, Modeling and analysis of inform. systems, 27:1, 124–131 | DOI | MR | Zbl
[4] V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials, Nauka, 1977 | MR | Zbl
[5] L. L. Schumaker, Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl
[6] V. I. Bogachev, Measure Theory, v. 1, Springer, 2007 | MR | Zbl
[7] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, M., 1984 | MR | Zbl
[8] Y. A. Brudnyi, “Criteria for the Existence of Derivatives in Lp”, Mathematics of the USSR-Sbornik, 2:1, 35–55 | DOI | MR | Zbl