Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2022_29_2_a0, author = {L. Yu. Bystrov and E. V. Kuz'min}, title = {Application of election functions to estimate the number of monotone self-dual boolean functions}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {78--91}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a0/} }
TY - JOUR AU - L. Yu. Bystrov AU - E. V. Kuz'min TI - Application of election functions to estimate the number of monotone self-dual boolean functions JO - Modelirovanie i analiz informacionnyh sistem PY - 2022 SP - 78 EP - 91 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a0/ LA - ru ID - MAIS_2022_29_2_a0 ER -
%0 Journal Article %A L. Yu. Bystrov %A E. V. Kuz'min %T Application of election functions to estimate the number of monotone self-dual boolean functions %J Modelirovanie i analiz informacionnyh sistem %D 2022 %P 78-91 %V 29 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a0/ %G ru %F MAIS_2022_29_2_a0
L. Yu. Bystrov; E. V. Kuz'min. Application of election functions to estimate the number of monotone self-dual boolean functions. Modelirovanie i analiz informacionnyh sistem, Tome 29 (2022) no. 2, pp. 78-91. http://geodesic.mathdoc.fr/item/MAIS_2022_29_2_a0/
[1] D. J. Kleitman, “On Dedekind's Problem: The Number of Monotone Boolean Functions”, Proceedings of the American Mathematical Society, 21:3 (1969), 677–682 | MR | Zbl
[2] L. Y. Bystrov, V. S.Rublev, “Bulevy funkcii, ne prinadlezhashchie predpolnym klassam”, Zametki po informatike i matematike, 13 (2021), 22–26
[3] L. Haviarova, E. Toman, “The Number of Monotone and Self-Dual Boolean Functions”, JAMSI, 10:2 (2014), 93–111 | MR | Zbl
[4] S. V. Yablonskiy, Introduction into discrete mathematics, 5th ed., HSE, 2008 | MR
[5] G. P. Gavrilov, A. A. Sapozhenko, Zadachi i uprazhneniya po diskretnoj matematike, Fizmatlit, 2005 | MR
[6] A. A.Rubchinskiy, Diskretnye matematicheskie modeli. Nachal'nye ponyatiya i standartnye zadachi, uchebnoe posobie, Direct-Media, 2014
[7] D. N. Zhuk, “Ot dvuznachnoj k k-znachnoj logike”, Intellektual'nye sistemy. Teoriya i prilozheniya, 22:1, 131–149 | MR
[8] V. N. Semenchuk, Diskretnaya matematika, Kurs lekcij, Francysk Skaryna Homiel State University, 2007
[9] A. D. Korshunov, “Reshenie problemy dedekinda o chisle monotonnyh bulevyh funkcij”, Doklady Akademii Nauk SSSR, 233:4 (1977), 543–546 | MR