Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2021_28_3_a3, author = {K. V. Lagutina}, title = {Comparison of style features for the authorship verification of literary texts}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {250--259}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a3/} }
TY - JOUR AU - K. V. Lagutina TI - Comparison of style features for the authorship verification of literary texts JO - Modelirovanie i analiz informacionnyh sistem PY - 2021 SP - 250 EP - 259 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a3/ LA - en ID - MAIS_2021_28_3_a3 ER -
K. V. Lagutina. Comparison of style features for the authorship verification of literary texts. Modelirovanie i analiz informacionnyh sistem, Tome 28 (2021) no. 3, pp. 250-259. http://geodesic.mathdoc.fr/item/MAIS_2021_28_3_a3/
[1] E. Stamatatos, “A survey of modern authorship attribution methods”, Journal of the American Society for information Science and Technology, 60:3 (2009), 538–556 | DOI
[2] K. Lagutina, N. Lagutina, E. Boychuk, I. Vorontsova, E. Shliakhtina, O. Belyaeva, I. Paramonov, “A survey on stylometric text features”, Proceedings of the 25th conference of open innovations association (FRUCT), IEEE, 2019, 184–195 | DOI
[3] T. Neal, K. Sundararajan, A. Fatima, Y. Yan, Y. Xiang, D. Woodard, “Surveying stylometry techniques and applications”, ACM Computing Surveys (CSUR), 50:6 (2018), 1–36 | DOI
[4] C. Lim, Y. Jeong, H. Choi, “Survey of temporal information extraction”, Journal of Information Processing Systems, 15:4 (2019), 931–956
[5] E. Boychuk, I. Paramonov, N. Kozhemyakin, N. Kasatkina, “Automated approach for rhythm analysis of French literary texts”, Proceedings of 15th conference of open innovations association FRUCT, IEEE, 2014, 15–23 | DOI
[6] K. Lagutina, N. Lagutina, E. Boychuk, V. Larionov, I. Paramonov \title Authorship verification of literary texts with rhythm features, Proceedings of the 28th conference of open innovations association FRUCT, 2021, 240-251 | DOI
[7] N. Potha, E. Stamatatos, “Intrinsic author verification using topic modeling”, Proceedings of the 10th hellenic conference on artificial intelligence, ACM, 2018, 1–7
[8] O. Halvani, L. Graner, “Rethinking the evaluation methodology of authorship verification methods”, International conference of the cross-language evaluation forum for European languages, Springer, 2018, 40–51
[9] O. Halvani, L. Graner, R. Regev, “TAVeer: an interpretable topic-agnostic authorship verification method”, Proceedings of the 15th international conference on availability, reliability and security, 2020, 1–10
[10] B. Boenninghoff, R. M. Nickel, S. Zeiler, D. Kolossa, “Similarity learning for authorship verification in social media”, ICASPP 2019-2019 IEEE international conference on acoustics, speech and signal processing, ICASPP, IEEE, 2019, 2457–2461
[11] S. Adamovic, V. Miskovic, M. Milosavljevic, M. Sarac, M. Veinovic, “Automated language-independent authorship verification (for Indo-European languages)”, Journal of the Association for Information Science and Technology, 70:8 (2019), 858–871 | DOI
[12] M. A. Al-Khatib, J. K. Al-qaoud, “Authorship verification of opinion articles in online newspapers using the idiolect of author: a comparative study”, Information, Communication Society, Taylor Francis, 2020, 1–19
[13] T. Stanisz, J. Kwapień, S. Drożdż, “Linguistic data mining with complex networks: a stylometric-oriented approach”, Information Sciences, 482 (2019), 301–320 | DOI
[14] K. Lagutina, A. Poletaev, N. Lagutina, E. Boychuk, I. Paramonov, “Automatic extraction of rhythm figures and analysis of their dynamics in prose of 19th-21st centuries”, Proceedings of the 26th conference of open innovations association FRUCT, IEEE, 2020, 247–255
[15] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown, “Text classification algorithms: a survey”, Information, 10:4 (2019), 150, 68 pp. | DOI
[16] M. Sokolova, G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Information processing management, 45:4 (2009), 427–437 | DOI