On a mechanism for the formation of spatially inhomogeneous structures of light waves in optical information transmission systems
Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 2, pp. 152-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spatially inhomogeneous structures of light waves are used as a mechanism of compacting information in optical and fiber-optic communication systems. In this paper, we consider a mathematical model of an optical radiation generator with a nonlinear delayed feedback loop and a stretching (compression) operator of the spatial coordinates of the light wave in a plane orthogonal to the radiation direction. It is shown that the presence of a delay in the feedback loop can lead to the generation of stable periodic spatially inhomogeneous oscillations. In the space of the main parameters of the generator, the spaces of generation of stable spatially non-uniform oscillations are constructed, the mechanism of their occurrence is studied, and approximate asymptotic formulas are constructed.
Keywords: spatially inhomogeneous waves, optical information transmission systems.
Mots-clés : bifurcation
@article{MAIS_2020_27_2_a1,
     author = {E. P. Kubishkin and V. A. Kulikov},
     title = {On a mechanism for the formation of spatially inhomogeneous structures of light waves in optical information transmission systems},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {152--163},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a1/}
}
TY  - JOUR
AU  - E. P. Kubishkin
AU  - V. A. Kulikov
TI  - On a mechanism for the formation of spatially inhomogeneous structures of light waves in optical information transmission systems
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2020
SP  - 152
EP  - 163
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a1/
LA  - ru
ID  - MAIS_2020_27_2_a1
ER  - 
%0 Journal Article
%A E. P. Kubishkin
%A V. A. Kulikov
%T On a mechanism for the formation of spatially inhomogeneous structures of light waves in optical information transmission systems
%J Modelirovanie i analiz informacionnyh sistem
%D 2020
%P 152-163
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a1/
%G ru
%F MAIS_2020_27_2_a1
E. P. Kubishkin; V. A. Kulikov. On a mechanism for the formation of spatially inhomogeneous structures of light waves in optical information transmission systems. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 2, pp. 152-163. http://geodesic.mathdoc.fr/item/MAIS_2020_27_2_a1/

[1] S. A. Akhmanov, M. A. Vorontsov, V. J. Ivanov, “Krupnomasshtabnye poperechnye nelineynye vzaimodeistviya v lazernyh puchkah; novye tipy nelineinyh voln, vozniknovenie opticheskoi turbylentnosti”, Pisma v ZHETPH, 47:12 (1988), 611-614 (In Russian)

[2] S. A. Akhmanov, M. A. Vorontsov, “Neustojchivosti i struktury v kogerentnyh nelinejno-opticheskih sistemah, ohvachennyh dvumernoj obratnoj svyaz'yu”, Scince, 9 (1989), 228-238 (In Russian)

[3] S. A. Akhmanov, M. A. Vorontsov, V. Y. Ivanov, A. V. Larichev, N. I. Zheleznykh, “Controlling transverse wave interactins in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optical Soc. Amer. Ser. B, 9:1 (1992), 78–90 | DOI

[4] A. V. Razgulin, T. E. Romanenko, “Vrashchayushchiesya volny v parabolicheskom funkcional'no-differencial'nom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, ZH. vychisl. matem. i matem. fiz., 53:11 (2013), 1804-1821 (In Russian) | Zbl

[5] E. P. Kubyshkin, V. A. Kulikov, “Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems”, Modeling and Analysis of Information Systems, 26:2 (2019), 297-305 (In Russian) | DOI | MR

[6] Y. I. Neymark, “D-razbienie prostranstva kvazipolinomov (k ustojchivosti linearizovannyh raspredelennyh sistem)”, PMM, 13:4 (1949), 349-380

[7] J. Marsden, M. McCracken, The bifurcation of the birth of a cycle and its applications, Mir, M., 1980 | MR

[8] A. D. Bryuno, Lokal'nyj metod nelinejnogo analiza differencial'nyh uravnenij, Scince, 1979

[9] E. P. Kubyshkin, A. R. Moriakova, “Features of bifurcations of periodic solutions of the Ikeda equation”, Russian Journal of Nonlinear Dynamics, 14:3 (2018), 301-324 | MR | Zbl