Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2020_27_1_a7, author = {S. N. Chukanov}, title = {The determination of distances between images by de {Rham} currents method}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {96--107}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a7/} }
TY - JOUR AU - S. N. Chukanov TI - The determination of distances between images by de Rham currents method JO - Modelirovanie i analiz informacionnyh sistem PY - 2020 SP - 96 EP - 107 VL - 27 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a7/ LA - en ID - MAIS_2020_27_1_a7 ER -
S. N. Chukanov. The determination of distances between images by de Rham currents method. Modelirovanie i analiz informacionnyh sistem, Tome 27 (2020) no. 1, pp. 96-107. http://geodesic.mathdoc.fr/item/MAIS_2020_27_1_a7/
[1] K. Grauman, B. Leibe, “Visual object recognition”, Synthesis lectures on artificial intelligence and machine learning, 5:2 (2011), 1–181
[2] A. Goshtasby, Theory and applications of image registration, John Wiley Sons, 2017 | MR
[3] D. Zhang, G. Lu, L. Zhang, Advanced biometrics, Springer, 2018
[4] M. Miller, A. Trouvé, L. Younes, “Hamiltonian systems and optimal control in computational anatomy: 100 years since D'Arcy Thompson”, Annual review of biomedical engineering, 17 (2015), 447–509
[5] M. Deza, E. Deza, “Encyclopedia of distances”, Encyclopedia of distances, Springer-Verlag, Berlin–Heidelberg, 2016 | MR | Zbl
[6] L. Younes, Shapes and diffeomorphisms, Applied Mathematical Sciences, 171, Springer-Verlag, Berlin–Heidelberg, 2019 | MR | Zbl
[7] G. De Rham, F. Smith, S. Chern, Differentiable manifolds: forms, currents, harmonic forms, Grundlehren der mathematischen Wissenschaften, 266, Springer-Verlag, 1984 | MR | Zbl
[8] S. Chukanov, “A rotation, translation, and scaling invariant Fourier transform of 3D image function”, Optoelectronics, Instrumentation and Data Processing, 44:3 (2008), 249–255
[9] S. Chukanov, “Constructing invariants for visualization of vector fields defined by integral curves of dynamic systems”, Optoelectronics, Instrumentation and Data Processing, 47:2 (2011), 151–155
[10] S. Chukanov, “Comparison of objects' images based on computational topology methods”, Trudy SPIIRAN, 18:5 (2019), 1043–1065
[11] N. Aronszajn, “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | MR | Zbl
[12] C. Micchelli, M. Pontil, “On learning vector-valued functions”, Neural computation, 17:1 (2005), 177–204 | MR | Zbl
[13] J. Glaunes, M. Micheli, “Matrix-valued kernels for shape deformation analysis. Geometry”, Imaging and Computing, 1:1 (2014), 57–139 | MR | Zbl
[14] S. Lejhter, S. Chukanov, “Matching of images based on their diffeomorphic mapping”, Computer optics, 42:1 (2018), 96–104
[15] S. Barahona, X. Gual-Arnau, M. Ibá{ n}ez, A. Simó, “Unsupervised classification of children's bodies using currents”, Advances in Data Analysis and Classification, 12:2 (2018), 365–397 | MR | Zbl
[16] I. Kaltenmark, B. Charlier, N. Charon, “A general framework for curve and surface comparison and registration with oriented varifolds”, Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, 3346–3355
[17] M. Vaillant, J. Glaunès, “Surface matching via currents”, Biennial international conference on information processing in medical imaging, Springer, 2005, 381–392
[18] D. Tang, Y. Cai, J. Zhao, Y. Xue, “A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems”, Information Sciences, 289 (2014), 162–189
[19] J. Flusser, B. Zitova, T. Suk, Moments and moment invariants in pattern recognition, John Wiley Sons, 2009 | Zbl
[20] J. Kennedy, R. Eberhart, “Particle swarm optimization”, Proceedings of ICNN'95-international conference on neural networks, v. 4, IEEE, 1995, 1942–1948