Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2019_26_4_a7, author = {V. E. Goryunov}, title = {Features of the computational implementation of the algorithm for~estimating the {Lyapunov} exponents of systems with delay}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {572--582}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_4_a7/} }
TY - JOUR AU - V. E. Goryunov TI - Features of the computational implementation of the algorithm for~estimating the Lyapunov exponents of systems with delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2019 SP - 572 EP - 582 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2019_26_4_a7/ LA - ru ID - MAIS_2019_26_4_a7 ER -
%0 Journal Article %A V. E. Goryunov %T Features of the computational implementation of the algorithm for~estimating the Lyapunov exponents of systems with delay %J Modelirovanie i analiz informacionnyh sistem %D 2019 %P 572-582 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2019_26_4_a7/ %G ru %F MAIS_2019_26_4_a7
V. E. Goryunov. Features of the computational implementation of the algorithm for~estimating the Lyapunov exponents of systems with delay. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 4, pp. 572-582. http://geodesic.mathdoc.fr/item/MAIS_2019_26_4_a7/
[1] Kuptsov P. V., “Computation of Lyapunov Exponents for Spatially Extended Systems: Advantages and Limitations of Various Numerical Methods”, Izv. VUZ. Applied Nonlinear Dynamics, 18:5 (2010), 93–112 (in Russian) | Zbl
[2] Oseledets V. I., “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Math. Soc., 19 (1968), 197–231 | MR | Zbl
[3] Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskiy V. V., Teoriya pokazateley Lyapunova i ee prilozheniya k voprosam ustoychivosti, Nauka, 1966 (in Russian)
[4] Balyakin A. A., Ryskin N. M., “Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback”, Izv. VUZ. Applied nonlinear dynamics, 15:6 (2007), 3–21 (in Russian) | Zbl
[5] Balyakin A. A., Blokhina E. V., “Peculiarities of Calculation of the Lyapunov Exponents Set in Distributed Self-Oscillated Systems with Delayed Feedback”, Izv. VUZ. Applied Nonlinear Dynamics, 16:2 (2008), 87–110 (in Russian) | Zbl
[6] Koloskova A. D., Moskalenko O. I., Koronovskii A. A., “A Method for Calculating the Spectrum of Lyapunov Exponents for Delay Systems”, Technical Physics Letters, 44:5 (2018), 374–377 | DOI
[7] Aleshin S. V., “The Numerical Evaluation of Attractors Exponents of Delay Differential Equations System”, Comp. Technologies in Sciences. Methods of Simul. on Supercomputers, 2014, 10–17 (in Russian)
[8] Farmer J. D., “Chaotic Attractors of an Infinite-Dimensional Dynamical System”, Physica D: Nonlinear Phenomena, 4:3 (1982), 366–393 | DOI | MR | Zbl
[9] Hairer E., Nørsett S. P., Wanner G., Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin–Heidelberg, 2008 | MR
[10] Cheney W., Kincaid D., Linear Algebra: Theory and Applications, Jones and Bartlett Publishers, Sudbury, Mass, 2009
[11] Nussbaumer H. J., Fast Fourier Transform and Convolution Algorithms, Springer-Verlag, Berlin–Heidelberg, 1981 | MR | MR | Zbl
[12] Glyzin D. S., Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “The Dynamic Renormalization Method for Finding the Maximum Lyapunov Exponent of a Chaotic Attractor”, Differ. Equ., 41:2 (2005), 284–289 | DOI | MR | Zbl
[13] Aleshin S. V., Glyzin D. S., Glyzin S. D., Goryunov V. E., “Estimation of Lyapunov Exponents for Quasi-Stable Attractors of Dynamical Systems with Time Delay”, Journal of Physics: Conference Series, 1163 (2019), 012045 | DOI
[14] Kuptsov P. V., Kuznetsov S. P., “Violation of Hyperbolicity in a Diffusive Medium with Local Hyperbolic Attractor”, Phys. Rev. E, 80 (2009), 01620513 | DOI | MR
[15] Hutchinson G. E., “Circular Causal Systems in Ecology”, Ann. N.Y. Acad. Sci., 50 (1948), 221–246 | DOI
[16] Hale J., Theory of Functional Differential Equations, Springer-Verlag, New York, 1977 | MR | Zbl
[17] Wright E. M., “A Non-Linear Difference-Differential Equation”, J. Reine Angew. Math., 194 (1955), 66–87 | MR | Zbl
[18] Kakutani S., Markus L., “On the Nonlinear Difference-Differential Equation $y'(t) = (A - By(t - \tau))y(t)$”, Contributions to the Theory of Nonlinear Oscillations, 4 (1958), 1–18 | MR
[19] Kaschenko S. A., “K voprosu ob otsenke v prostranstve parametrov oblasti global'noy ustoychivosti uravneniya Khatchinsona”, Nelineynye kolebaniya v zadachakh ekologii, YarGU, Yaroslavl, 1985, 55–62 (in Russian)
[20] Kaschenko S. A., “Asymptotics of Solutions of the Generalized Hutchinson's Equation”, Modeling and Analysis of Information Systems, 19:3 (2012), 32–62 (in Russian)