Geometric estimates in interpolation on an $n$-dimensional ball
Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 3, pp. 441-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $n\in {\mathbb N}$. Let $B_n$ be a Euclidean unit ball in ${\mathbb R}^n$ given by the inequality $\|x\|\leq 1$, $\|x\|:=\left(\sum\limits_{i=1}^n x_i^2\right)^{\frac{1}{2}}$. By $C(B_n)$ we mean a set of continuous functions $f:B_n\to{\mathbb R}$ with the norm $\|f\|_{C(B_n)}:=\max\limits_{x\in B_n}|f(x)|$. The symbol $\Pi_1\left({\mathbb R}^n\right)$ denotes a set of polynomials in $n$ variables of degree $\leq 1$, i. e., linear functions upon ${\mathbb R}^n$. Assume that $x^{(1)}, \ldots, x^{(n+1)}$ are vertices of an $n$-dimensional nondegenerate simplex $S\subset B_n$. The interpolation projector $P:C(B_n)\to \Pi_1({\mathbb R}^n)$ corresponding to $S$ is defined by the equalities $Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right).$ Denote by $\|P\|_{B_n}$ the norm of $P$ as an operator from $C(B_n)$ onto $C(B_n)$. Let us define $\theta_n(B_n)$ as the minimal value of $\|P\|_{B_n}$ under the condition $x^{(j)}\in B_n$. We describe the approach in which the norm of the projector can be estimated from the bottom through the volume of the simplex. Let $\chi_n(t):=\frac{1}{2^nn!}\left[ (t^2-1)^n \right] ^{(n)}$ be the standardized Legendre polynomial of degree $n$. We prove that $ \|P\|_{B_n} \geq \chi_n^{-1} \left(\frac{\mathrm{vol}(B_n)}{\mathrm{vol}(S)}\right).$ From this, we obtain the equivalence $\theta_n(B_n)$ $\asymp$ $\sqrt{n}$. Also we estimate the constants from such inequalities and give the comparison with the similar relations for linear interpolation upon the $n$-dimensional unit cube. These results have applications in polynomial interpolation and computational geometry.
Mots-clés : simplex, norm
Keywords: ball, linear interpolation, projector, estimate.
@article{MAIS_2019_26_3_a7,
     author = {M. V. Nevskii},
     title = {Geometric estimates in interpolation on an $n$-dimensional ball},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {441--449},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/}
}
TY  - JOUR
AU  - M. V. Nevskii
TI  - Geometric estimates in interpolation on an $n$-dimensional ball
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2019
SP  - 441
EP  - 449
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/
LA  - ru
ID  - MAIS_2019_26_3_a7
ER  - 
%0 Journal Article
%A M. V. Nevskii
%T Geometric estimates in interpolation on an $n$-dimensional ball
%J Modelirovanie i analiz informacionnyh sistem
%D 2019
%P 441-449
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/
%G ru
%F MAIS_2019_26_3_a7
M. V. Nevskii. Geometric estimates in interpolation on an $n$-dimensional ball. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 3, pp. 441-449. http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/

[1] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)

[2] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Aut. Control Comp. Sci., 51:7 (2017), 770–782 | DOI | MR

[3] Nevskii M. V., Ukhalov A. Yu., “On optimal interpolation by linear functions on an $n$-dimensional cube”, Aut. Control Comp. Sci., 52:7 (2018), 828–842 | DOI | MR | MR

[4] Nevskii M. V., Ukhalov A. Yu., “Linear interpolation on a Euclidean ball in ${\mathbb R}^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 (in Russian) | MR

[5] Szegö G., Orthogonal polynomials, American Mathematical Society, New York, 1959 (in English) | MR | Zbl

[6] Suetin P. K., Klassicheskie ortogonal'nye mnogochleny, Nauka, M., 1979 (in Russian) | MR

[7] Fikhtengol'ts G. M., Kurs differencial'nogo i integral'nogo ischislenia, v. 3, Fizmatlit, M., 2001 (in Russian)

[8] Fejes Tóth L., Regular figures, Macmillan/Pergamon, New York, 1964 | MR

[9] Slepian D., “The content of some extreme simplices”, Pacific J. Math., 31 (1969), 795–808 | DOI | MR | Zbl

[10] Vandev D., “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6 (1992), 37–40 | MR | Zbl