Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2019_26_3_a7, author = {M. V. Nevskii}, title = {Geometric estimates in interpolation on an $n$-dimensional ball}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {441--449}, publisher = {mathdoc}, volume = {26}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/} }
M. V. Nevskii. Geometric estimates in interpolation on an $n$-dimensional ball. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 3, pp. 441-449. http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/
[1] Nevskii M. V., Geometricheskie ocenki v polinomialnoy interpolyacii, P. G. Demidov Yaroslavl State University, Yaroslavl, 2012 (in Russian)
[2] Nevskii M. V., Ukhalov A. Yu., “New estimates of numerical values related to a simplex”, Aut. Control Comp. Sci., 51:7 (2017), 770–782 | DOI | MR
[3] Nevskii M. V., Ukhalov A. Yu., “On optimal interpolation by linear functions on an $n$-dimensional cube”, Aut. Control Comp. Sci., 52:7 (2018), 828–842 | DOI | MR | MR
[4] Nevskii M. V., Ukhalov A. Yu., “Linear interpolation on a Euclidean ball in ${\mathbb R}^n$”, Modeling and Analysis of Information Systems, 26:2 (2019), 279–296 (in Russian) | MR
[5] Szegö G., Orthogonal polynomials, American Mathematical Society, New York, 1959 (in English) | MR | Zbl
[6] Suetin P. K., Klassicheskie ortogonal'nye mnogochleny, Nauka, M., 1979 (in Russian) | MR
[7] Fikhtengol'ts G. M., Kurs differencial'nogo i integral'nogo ischislenia, v. 3, Fizmatlit, M., 2001 (in Russian)
[8] Fejes Tóth L., Regular figures, Macmillan/Pergamon, New York, 1964 | MR
[9] Slepian D., “The content of some extreme simplices”, Pacific J. Math., 31 (1969), 795–808 | DOI | MR | Zbl
[10] Vandev D., “A minimal volume ellipsoid around a simplex”, C. R. Acad. Bulg. Sci., 45:6 (1992), 37–40 | MR | Zbl