Geometric estimates in interpolation on an $n$-dimensional ball
Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 3, pp. 441-449
Voir la notice de l'article provenant de la source Math-Net.Ru
Suppose $n\in {\mathbb N}$. Let $B_n$ be a Euclidean
unit ball in ${\mathbb R}^n$ given by the inequality
$\|x\|\leq 1$, $\|x\|:=\left(\sum\limits_{i=1}^n x_i^2\right)^{\frac{1}{2}}$.
By
$C(B_n)$ we mean a set of continuous functions
$f:B_n\to{\mathbb R}$ with the norm
$\|f\|_{C(B_n)}:=\max\limits_{x\in B_n}|f(x)|$.
The symbol $\Pi_1\left({\mathbb R}^n\right)$ denotes a set of polynomials
in $n$ variables of degree $\leq 1$, i. e., linear functions upon
${\mathbb R}^n$.
Assume that
$x^{(1)}, \ldots, x^{(n+1)}$ are vertices
of an
$n$-dimensional nondegenerate simplex $S\subset B_n$.
The interpolation projector
$P:C(B_n)\to \Pi_1({\mathbb R}^n)$ corresponding to
$S$ is defined by the equalities
$Pf\left(x^{(j)}\right)=
f\left(x^{(j)}\right).$ Denote by $\|P\|_{B_n}$ the norm of $P$ as an
operator from
$C(B_n)$ onto $C(B_n)$.
Let us define $\theta_n(B_n)$ as the minimal value of
$\|P\|_{B_n}$ under the condition $x^{(j)}\in B_n$.
We describe the approach
in which the norm of the
projector can be estimated from the bottom through
the volume of the simplex.
Let
$\chi_n(t):=\frac{1}{2^nn!}\left[ (t^2-1)^n \right] ^{(n)}$ be
the standardized Legendre polynomial of degree
$n$.
We prove that
$
\|P\|_{B_n}
\geq
\chi_n^{-1}
\left(\frac{\mathrm{vol}(B_n)}{\mathrm{vol}(S)}\right).$
From this, we obtain the equivalence
$\theta_n(B_n)$ $\asymp$ $\sqrt{n}$.
Also we estimate the constants from such inequalities and
give the comparison with the similar relations for linear interpolation upon
the $n$-dimensional unit cube. These results have applications in polynomial
interpolation and computational geometry.
Mots-clés :
simplex, norm
Keywords: ball, linear interpolation, projector, estimate.
Keywords: ball, linear interpolation, projector, estimate.
@article{MAIS_2019_26_3_a7,
author = {M. V. Nevskii},
title = {Geometric estimates in interpolation on an $n$-dimensional ball},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {441--449},
publisher = {mathdoc},
volume = {26},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/}
}
M. V. Nevskii. Geometric estimates in interpolation on an $n$-dimensional ball. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 3, pp. 441-449. http://geodesic.mathdoc.fr/item/MAIS_2019_26_3_a7/