Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems
Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 2, pp. 297-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of distributed information carriers in the form of stable spatially inhomogeneous structures in optical and fiber-optic communication systems is considered. We study the conditions for the occurrence of such stable spatially inhomogeneous structures of the light wave of the generator of optical radiation. The formation of inhomogeneous structures that occur in a plane orthogonal to the direction of wave propagation is provided by a thin layer of nonlinear medium and a two-dimensional lagging feedback loop with the rotation operator of the spatial coordinates of the light wave in the emission plane of the optical generator. In the space of the main parameters of the generator (a control parameter, the angle of rotation of the spatial coordinates, the magnitude of the delay), the areas of generation of stable spatially inhomogeneous structures are constructed, the mechanisms of their occurrence are analyzed.
Keywords: spatially inhomogeneous waves
Mots-clés : bifurcation.
@article{MAIS_2019_26_2_a8,
     author = {E. P. Kubyshkin and V. A. Kulikov},
     title = {Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {297--305},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/}
}
TY  - JOUR
AU  - E. P. Kubyshkin
AU  - V. A. Kulikov
TI  - Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2019
SP  - 297
EP  - 305
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/
LA  - ru
ID  - MAIS_2019_26_2_a8
ER  - 
%0 Journal Article
%A E. P. Kubyshkin
%A V. A. Kulikov
%T Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems
%J Modelirovanie i analiz informacionnyh sistem
%D 2019
%P 297-305
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/
%G ru
%F MAIS_2019_26_2_a8
E. P. Kubyshkin; V. A. Kulikov. Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/

[1] Akhmanov S. A., Vorontsov M. A., “Neustojchivosti i struktury v kogerentnyh nelinejno-opticheskih sistemah, ohvachennyh dvumernoj obratnoj svyaz'yu”, Nelineinye volny. Dinamika i evolyutsiya, Nauka, 1989, 228–238 (in Russian)

[2] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., et al., “Controlling transverse wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optical Soc. Amer. Ser. B, 9:1 (1992), 78–90 | DOI

[3] Kashchenko S. A., “Asimptotika prostranstvenno-neodnorodnyh struktur v kogerentnyh nelinejno-opticheskih sistemah”, ZH. vychisl. matem. i matem. fiz., 31:3 (1991), 467–473 (in Russian) | MR

[4] Razgulin A. V., “Ob avtokolebaniyah v nelinejnoj parabolicheskoj zadache s preobrazovannym argumentom”, ZH. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80 (in Russian) | MR | Zbl

[5] Razgulin A. V., “Ob odnom klasse funkcional'no-differencial'nyh parabolicheskih uravnenij nelinejnoj optiki”, Differenc. ur-niya, 36:3 (2000), 400–407 (in Russian) | MR | Zbl

[6] Belan E. P., “O dinamike begushchih voln v parabolicheskom uravnenii s preobrazovaniem sdviga prostranstvennoj peremennoj”, Zh. matem. fiz., analiza, geometrii, 1:1 (2005), 3–34 (in Russian) | MR | Zbl

[7] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Analysis: TMA, 32:2 (1998), 261–278 | DOI | MR | Zbl

[8] Razgulin A. V., Romanenko T. E., “Vrashchayushchiesya volny v parabolicheskom funkcional'no-differencial'nom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 53:11 (2013), 1804–1821 (in Russian) | DOI | MR | Zbl

[9] Neimark Yu. I., “Drazbienie prostranstva kvazipolinomov (k ustoychivosti linearizovannykh raspredelennykh sistem)”, PMM, 13:4 (1949), 349–380 (in Russian)

[10] Neimark Yu. I., “The structure of the D-decomposition of the space of quasipolynomials and the diagrams of Vyšnegradskii and Nyquist”, Dokl. Akad. Nauk USSR, 60 (1948), 1503–1506 | MR

[11] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, 1948 | MR

[12] Bryuno A. D., Lokal'nyj metod nelinejnogo analiza differencial'nyh uravnenij, Naika, 1979 (in Russian)

[13] Kubyshkin E. P., Moriakova A. R., “Features of Bifurcations of Periodic Solutions of the Ikeda Equation”, Russian Journal of Nonlinear Dynamics, 14:3 (2018), 301–324 | MR | Zbl