Mots-clés : bifurcation.
@article{MAIS_2019_26_2_a8,
author = {E. P. Kubyshkin and V. A. Kulikov},
title = {Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {297--305},
year = {2019},
volume = {26},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/}
}
TY - JOUR AU - E. P. Kubyshkin AU - V. A. Kulikov TI - Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems JO - Modelirovanie i analiz informacionnyh sistem PY - 2019 SP - 297 EP - 305 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/ LA - ru ID - MAIS_2019_26_2_a8 ER -
%0 Journal Article %A E. P. Kubyshkin %A V. A. Kulikov %T Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems %J Modelirovanie i analiz informacionnyh sistem %D 2019 %P 297-305 %V 26 %N 2 %U http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/ %G ru %F MAIS_2019_26_2_a8
E. P. Kubyshkin; V. A. Kulikov. Analysis of the conditions for the emergence of spatially inhomogeneous structures of light waves in optical information transmission systems. Modelirovanie i analiz informacionnyh sistem, Tome 26 (2019) no. 2, pp. 297-305. http://geodesic.mathdoc.fr/item/MAIS_2019_26_2_a8/
[1] Akhmanov S. A., Vorontsov M. A., “Neustojchivosti i struktury v kogerentnyh nelinejno-opticheskih sistemah, ohvachennyh dvumernoj obratnoj svyaz'yu”, Nelineinye volny. Dinamika i evolyutsiya, Nauka, 1989, 228–238 (in Russian)
[2] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., et al., “Controlling transverse wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Optical Soc. Amer. Ser. B, 9:1 (1992), 78–90 | DOI
[3] Kashchenko S. A., “Asimptotika prostranstvenno-neodnorodnyh struktur v kogerentnyh nelinejno-opticheskih sistemah”, ZH. vychisl. matem. i matem. fiz., 31:3 (1991), 467–473 (in Russian) | MR
[4] Razgulin A. V., “Ob avtokolebaniyah v nelinejnoj parabolicheskoj zadache s preobrazovannym argumentom”, ZH. vychisl. matem. i matem. fiz., 33:1 (1993), 69–80 (in Russian) | MR | Zbl
[5] Razgulin A. V., “Ob odnom klasse funkcional'no-differencial'nyh parabolicheskih uravnenij nelinejnoj optiki”, Differenc. ur-niya, 36:3 (2000), 400–407 (in Russian) | MR | Zbl
[6] Belan E. P., “O dinamike begushchih voln v parabolicheskom uravnenii s preobrazovaniem sdviga prostranstvennoj peremennoj”, Zh. matem. fiz., analiza, geometrii, 1:1 (2005), 3–34 (in Russian) | MR | Zbl
[7] Skubachevskii A. L., “Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics”, Nonlinear Analysis: TMA, 32:2 (1998), 261–278 | DOI | MR | Zbl
[8] Razgulin A. V., Romanenko T. E., “Vrashchayushchiesya volny v parabolicheskom funkcional'no-differencial'nom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 53:11 (2013), 1804–1821 (in Russian) | DOI | MR | Zbl
[9] Neimark Yu. I., “Drazbienie prostranstva kvazipolinomov (k ustoychivosti linearizovannykh raspredelennykh sistem)”, PMM, 13:4 (1949), 349–380 (in Russian)
[10] Neimark Yu. I., “The structure of the D-decomposition of the space of quasipolynomials and the diagrams of Vyšnegradskii and Nyquist”, Dokl. Akad. Nauk USSR, 60 (1948), 1503–1506 | MR
[11] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, 1948 | MR
[12] Bryuno A. D., Lokal'nyj metod nelinejnogo analiza differencial'nyh uravnenij, Naika, 1979 (in Russian)
[13] Kubyshkin E. P., Moriakova A. R., “Features of Bifurcations of Periodic Solutions of the Ikeda Equation”, Russian Journal of Nonlinear Dynamics, 14:3 (2018), 301–324 | MR | Zbl