Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2018_25_6_a3, author = {N. V. Shilov and D. A. Kondratyev and I. S. Anureev and E. V. Bodin and A. V. Promsky}, title = {Platform-independent specification and verification of the standard mathematical square root function}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {637--666}, publisher = {mathdoc}, volume = {25}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a3/} }
TY - JOUR AU - N. V. Shilov AU - D. A. Kondratyev AU - I. S. Anureev AU - E. V. Bodin AU - A. V. Promsky TI - Platform-independent specification and verification of the standard mathematical square root function JO - Modelirovanie i analiz informacionnyh sistem PY - 2018 SP - 637 EP - 666 VL - 25 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a3/ LA - ru ID - MAIS_2018_25_6_a3 ER -
%0 Journal Article %A N. V. Shilov %A D. A. Kondratyev %A I. S. Anureev %A E. V. Bodin %A A. V. Promsky %T Platform-independent specification and verification of the standard mathematical square root function %J Modelirovanie i analiz informacionnyh sistem %D 2018 %P 637-666 %V 25 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a3/ %G ru %F MAIS_2018_25_6_a3
N. V. Shilov; D. A. Kondratyev; I. S. Anureev; E. V. Bodin; A. V. Promsky. Platform-independent specification and verification of the standard mathematical square root function. Modelirovanie i analiz informacionnyh sistem, Tome 25 (2018) no. 6, pp. 637-666. http://geodesic.mathdoc.fr/item/MAIS_2018_25_6_a3/
[1] Kuliamin V.V., “Standardization and testing of implementations of mathematical functions in floating point numbers”, Programming and Computer Software, 33:3 (2007), 154–173 | DOI | MR | Zbl
[2] Nikitin V.F., Variant vychisleniya kvadratnogo kornya (algoritm Nyutona) (in Russian)
[3] Shelekhov V.I., “Verifikatsiya i sintez effektivnykh programm standartnykh funktsiy floor, isqrt i ilog2 v tekhnologii predikatnogo programmirovaniya”, Problemy upravleniya i modelirovaniya v slozhnykh sistemakh, Trudy 12-y mezhd. konf. (Samara, Samarskiy nauchnyy tsentr RAN, 2010), 622–630 (in Russian)
[4] Ayad A., Marché C., “Multi-prover verification of floating-point programs”, Perspectives of System Informatics, PSI 2014, Lecture Notes in Artificial Intelligence, 6173, Springer, Berlin–Heidelberg, 2010, 127–141 | Zbl
[5] Barret G., “Formal Methods Applied to a Floating-Point Number System”, IEEE Trans. Softw. Eng., 15:5 (1989), 611–621 | DOI
[6] Brain M. et al., “An Automatable Formal Semantics for IEEE-754 Floating-Point Arithmetic”, Computer Arithmetic, Proc. of the 2015 IEEE 22nd Symposium ARITH '15, IEEE Computer Society, 2015, 160–167
[7] El-Magdoub M.H., Best Square Root Method – Algorithm – Function (Precision VS Speed), https://www.codeproject.com/Articles/69941/Best-Square-Root-Method-Algorithm-Function-Precisi
[8] Ferguson W.E. et al., Digit serial methods with applications to division and square root (with mechanically checked correctness proofs), 2017, arXiv: 1708.00140
[9] Gamboa R.A., Square Roots in Acl2: a Study in Sonata Form, Technical Report, University of Texas at Austin, USA, 1997
[10] Gries D., The Science of Programming, Springer-Verlag, New York, 1981 | MR | Zbl
[11] Grohoski G., “Verifying Oracle's SPARC Processors with ACL2”, Slides of the Invited talk, The ACL2 Theorem Prover and Its Applications, Proc. Int. Workshop, 2017 http://www.cs.utexas.edu/users/moore/acl2/workshop-2017/slides-accepted/grohoski-ACL2_talk.pdf
[12] Gutowski M.W., Power and beauty of interval methods, arXiv: physics/0302034
[13] Harrison J., “A Machine-Checked Theory of Floating Point Arithmetic”, Lecture Notes in Computer Science, 1690, Springer, Berlin–Heidelberg, 1999, 113–130 | DOI
[14] Harrison J., “Formal Verification of Floating Point Trigonometric Functions”, Lecture Notes in Computer Science, 1954, Springer, Berlin–Heidelberg, 2000, 217–233 | DOI
[15] Harrison J., “Formal Verification of IA-64 Division Algorithms”, Lecture Notes in Computer Science, 1869, Springer, Berlin–Heidelberg, 2000, 233–251 | DOI | Zbl
[16] Harrison J., “Floating Point Verification in HOL Light: The Exponential Function”, Formal Methods in System Design, 16:3 (2000), 271–305 | DOI
[17] Harrison J., “Formal Verification of Square Root Algorithms”, Formal Methods in System Design, 22:2 (2003), 143–153 | DOI | Zbl
[18] Hoare C.A.R., “The Verifying Compiler: A Grand Challenge for Computing Research”, Lecture Notes in Computer Science, 2890, Springer, Berlin–Heidelberg, 2003, 1–12 | MR
[19] Kuliamin V.V., “Standardization and Testing of Mathematical Functions in floating point numbers”, Lecture Notes in Computer Science, 5947, Springer, Berlin–Heidelberg, 2010, 257–268 | DOI | Zbl
[20] Monniaux D., “The pitfalls of verifying floating-point computations”, ACM Transactions on Programming Languages and Systems, 30:3 (2008), 1–41 | DOI
[21] Muller J.-M., Elementary Functions: Algorithms and Implementation, Birkhaüser, 2005 | MR
[22] Muller J.-M. et al., “Verifying Floating-Point Algorithms”, Handbook of Floating-Point Arithmetic, 2nd edition, Birkhüser, 2018, 479–511 | DOI
[23] Sawada J., Gamboa R., “Mechanical Verification of a Square Root Algorithm Using Taylor's Theorem”, Lecture Notes in Computer Science, 2517, Springer, Berlin–Heidelberg, 2002, 274–291 | DOI | Zbl
[24] Shilov N.V., “On the need to specify and verify standard functions”, The Bulletin of the Novosibirsk Computing Center (Series: Computer Science), 38 (2015), 105–119 | Zbl
[25] Shilov N.V., Promsky A.V., “On specification andd verification of standard mathematical functions”, Humanities and Science University Journal, 19 (2016), 57–68
[26] Shilov N.V. et al., Towards platform-independent verification of the standard mathematical functions: the square root function, arXiv: abs/1801.00969
[27] Siddique U., Hasan O., “On the Formalization of Gamma Function in HOL”, J. Autom. Reason., 53:4 (2014), 407–429 | DOI | MR | Zbl
[28] C reference. Sqrt, sqrtf, sqrtl, http://en.cppreference.com/w/c/numeric/math/sqrt
[29] IEEE 754-2008, http://ieeexplore.ieee.org/document/4610935
[30] ISO/IEC/IEEE 60559:2011. Information technology – Microprocessor Systems – Floating-Point arithmetic, http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57469
[31] nth root algorithm, https://en.wikipedia.org/wiki/Nth_root_algorithm
[32] “Roskosmos” nazval prichinu neudachnogo zapuska s kosmodroma Vostochnyy (in Russian)