Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a8, author = {A. A. Kashchenko}, title = {A family of non-rough cycles in a system of two coupled delayed generators}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {649--654}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a8/} }
TY - JOUR AU - A. A. Kashchenko TI - A family of non-rough cycles in a system of two coupled delayed generators JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 649 EP - 654 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a8/ LA - ru ID - MAIS_2017_24_5_a8 ER -
A. A. Kashchenko. A family of non-rough cycles in a system of two coupled delayed generators. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 649-654. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a8/
[1] Kilias T. et al., “Electronic chaos generators-design and applications”, International journal of electronics, 79:6 (1995), 737–753 | DOI
[2] Kilias T., Mogel A., Schwarz W., “Generation and application of broadband signals using chaotic electronic systems”, Nonlinear Dynamics: New Theoretical and Applied Results, Akademie Verlag, Berlin, 1995, 92–111 | Zbl
[3] Balachandran B., Kalmar-Nagy T., Gilsinn D. E., Delay differential equations, Springer, Berlin, 2009 | MR | Zbl
[4] Dmitriev A. S., Kislov V. Ya., Stokhasticheskie kolebaniya v radiotekhnike, Nauka, Moskva, 1989 (in Russian) | MR
[5] Dmitriev A. S., Kaschenko S. A., “Dinamika generatora s zapazdyvayushchey obratnoy svyazyu i nizkodobrotnym filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 34:12 (1989), 24–39 (in Russian)
[6] Kaschenko S. A., “Asymptotics of relaxation oscillations in systems of differential-difference equations with a compactly supported nonlinearity. I”, Differential Equations, 31:8 (1995), 1275–1285 | MR | MR
[7] Kaschenko S. A., “Asymptotics of relaxation oscillations in systems of differential-difference equations with a compactly supported nonlinearity. II”, Differential Equations, 31:12 (1995), 1938–1946 | MR
[8] Kashchenko A. A., “Dynamics of a system of two simplest oscillators with finite non-linear feedbacks”, Modeling and Analysis of Information Systems, 23:6 (2016), 841–849 (in Russian) | MR
[9] Kaschenko S. A., “Investigation, by large parameter methods, of a system of nonlinear differential-difference equations modeling a predator-prey problem”, Soviet Mathematics. Doklady, 26:2 (1982), 420–423 | MR
[10] Grigorieva E. V., Kashchenko S. A., “Regular and chaotic pulsations in laser diode with delayed feedback”, International Journal of Bifurcation and Chaos, 3:6 (1993), 1515–1528 | DOI | Zbl
[11] Bestehorn M., Grigorieva E. V., Kaschenko S. A., “Spatiotemporal structures in a model with delay and diffusion”, Physical Review E, 70:2 (2004), 026202 | DOI | MR
[12] Grigorieva E. V., Kashchenko S. A., “Dynamics of spikes in delay coupled semiconductor lasers”, Regular and Chaotic Dynamics, 15:2/3 (2010), 319–327 | DOI | MR | Zbl
[13] Kaschenko D. , Kaschenko S., Schwarz W., “Dynamics of First Order Equations with Nonlinear Delayed Feedback”, International Journal of Bifurcation and Chaos, 22:8 (2012), 1250184 | DOI | MR | Zbl
[14] Kaschenko S. A., “Relaxation oscillations in a system with delays modeling the predator-prey problem”, Automatic Control and Computer Sciences, 49:7 (2015), 547–581 | DOI