Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_5_a5, author = {P. N. Nesterov}, title = {Asymptotic integration of certain differential equations in {Banach} space}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {596--614}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a5/} }
TY - JOUR AU - P. N. Nesterov TI - Asymptotic integration of certain differential equations in Banach space JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 596 EP - 614 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a5/ LA - ru ID - MAIS_2017_24_5_a5 ER -
P. N. Nesterov. Asymptotic integration of certain differential equations in Banach space. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 5, pp. 596-614. http://geodesic.mathdoc.fr/item/MAIS_2017_24_5_a5/
[1] Yosida K., Functional analysis, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1965 | MR | MR | Zbl
[2] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | MR | Zbl
[3] Marsden J. E., McCracken M., The Hopf bifurcation and its applications, Springer-Verlag, New York, 1976 | MR | MR | Zbl
[4] Nesterov P. N., “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients”, Differ. Equ., 43:6 (2007), 745–756 | DOI | MR | Zbl
[5] Nesterov P. N., “Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing coeffcients. II”, Model. Anal. Inform. Sist., 21:5 (2014), 5–37 (in Russian)
[6] Fomin V. N., Mathematical theory of parametric resonance in linear distributed systems, Leningr. Univ. Publ., Leningrad, 1972 (in Russian) | MR
[7] Hale J. K., Theory of functional differential equations, Springer-Verlag, New York, 1977 | MR | MR | Zbl
[8] Balakrishnan A. V., Applied functional analysis, Springer-Verlag, New York, 1981 | MR | Zbl
[9] Ball J. M., “Strongly continuous semigroups, weak solutions, and the variation of constants formula”, Proc. Amer. Math. Soc., 63:2 (1977), 370–373 | MR | Zbl
[10] Ball J. M., “On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations”, J. Differential Equations, 27 (1978), 224–265 | DOI | MR | Zbl
[11] Carr J., Applications of centre manifold theory, Springer-Verlag, New York, 1981 | MR | Zbl
[12] Eastham M. S. P., The asymptotic solution of linear differential systems, Clarendon Press, Oxford, 1989 | MR | Zbl
[13] Hale J., Verduyn Lunel S. M., Introduction to functional differential equations, Springer-Verlag, New York, 1993 | MR | Zbl
[14] Kato T., Perturbation theory for linear operators, Springer-Verlag, Berlin–Heidelberg–New York, 1980 | MR | Zbl
[15] Langer M., Kozlov V., “Asymptotics of solutions of a perturbed heat equation”, J. Math. Anal. Appl., 397:2 (2013), 481–493 | DOI | MR | Zbl
[16] Levinson N., “The asymptotic nature of solutions of linear systems of differential equations”, Duke Math. J., 15:1 (1948), 111–126 | DOI | MR | Zbl
[17] Nesterov P., “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients: a center manifold approach”, Electron. J. Qual. Theory Differ. Equ., 2016, no. 33, 1–43 | DOI | MR
[18] Pazy A., Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983 | MR | Zbl
[19] Rothe F., Global solutions of reaction-diffusion systems, Springer-Verlag, Berlin, Heidelberg, 1984 | MR | Zbl
[20] Wu J., Theory and applications of partial functional differential equations, Springer-Verlag, New York, 1996 | MR | Zbl