The heat equation solution near the interface between two media
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 339-352.

Voir la notice de l'article provenant de la source Math-Net.Ru

Physical phenomena that arise near the boundaries of media with different characteristics, for example, changes in temperature at the water-air interface, require the creation of models for their adequate description. Therefore, when setting model problems one should take into account the fact that the environment parameters undergo changes at the interface. In particular, experimentally obtained temperature curves at the water-air interface have a kink, that is, the derivative of the temperature distribution function suffers a discontinuity at the interface. A function with this feature can be a solution to the problem for the heat equation with a discontinuous thermal diffusivity and discontinuous function describing heat sources. The coefficient of thermal diffusivity in the water-air transition layer is small, so a small parameter appears in the equation prior to the spatial derivative, which makes the equation singularly perturbed. The solution of the boundary value problem for such an equation can have the form of a contrast structure, that is, a function whose domain contains a subdomain, where the function has a large gradient. This region is called an internal transition layer. The existence of a solution with the internal transition layer of such a problem requires justification that can be carried out with the use of an asymptotic analysis. In the present paper, such an analytic investigation was carried out, and this made it possible to prove the existence of a solution and also to construct its asymptotic approximation.
Keywords: heat conduction equation, asymptotic methods, small parameter, discontinuous heat conductivity coefficient, discontinuous sources.
@article{MAIS_2017_24_3_a6,
     author = {N. T. Levashova and O. A. Nikolaeva},
     title = {The heat equation solution near the interface between two media},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {339--352},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - O. A. Nikolaeva
TI  - The heat equation solution near the interface between two media
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 339
EP  - 352
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/
LA  - ru
ID  - MAIS_2017_24_3_a6
ER  - 
%0 Journal Article
%A N. T. Levashova
%A O. A. Nikolaeva
%T The heat equation solution near the interface between two media
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 339-352
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/
%G ru
%F MAIS_2017_24_3_a6
N. T. Levashova; O. A. Nikolaeva. The heat equation solution near the interface between two media. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/

[1] Levashova N. T., Nikolaeva O. A., Pashkin A. D., “Simulation of the temperature distribution at the water–air interface using the theory of contrast structures”, Moscow University Physics Bulletin, 70:5 (2015), 341–345 | DOI

[2] Ivanov A.A., Vvedenie v okeanografiju, Mir, M., 1978, 574 pp. (in Russian)

[3] Vasil’eva A. B., “Step-like contrasting structures for a singularly perturbed quasilinear second-order differential equation”, Comput. Math. Math. Phys., 35:4 (1995), 411–419 | MR | Zbl

[4] Vasil’eva A. B., Butuzov V. F., Nefedov N. N., “Singularly perturbed problems with boundary and internal layers”, Proc. Steklov Inst. Math., 268 (2010), 258–273 | DOI | MR | Zbl

[5] Butuzov V. F., Levashova N. T., Mel’nikova A. A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR | Zbl

[6] Levashova N. T., Nefedov N. N., Yagremtsev A. V., “Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection”, Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR | Zbl

[7] Nefedov N. N., Ni M., “Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term”, Comput. Math. Math. Phys., 55:12 (2015), 2001–2007 | DOI | DOI | MR | Zbl

[8] Levashova N. T., Nefedov N. N., Orlov A. O., “Time-independent reaction–diffusion equation with a discontinuous reactive term”, Comput. Math. Math. Phys., 57:5 (2017), 854–866 | DOI | MR

[9] Vasil'eva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian) | MR

[10] Davydova M. A., Levashova N. T., Zakharova S. A., “The Asymptotical Analysis for the Problem of Modeling the Gas Admixture in the Surface Layer of the Atmosphere”, Modeling and Analysis of Information Systems, 23:3 (2016), 283–290 (in Russian) | MR