Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_3_a6, author = {N. T. Levashova and O. A. Nikolaeva}, title = {The heat equation solution near the interface between two media}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {339--352}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/} }
TY - JOUR AU - N. T. Levashova AU - O. A. Nikolaeva TI - The heat equation solution near the interface between two media JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 339 EP - 352 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/ LA - ru ID - MAIS_2017_24_3_a6 ER -
N. T. Levashova; O. A. Nikolaeva. The heat equation solution near the interface between two media. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 339-352. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a6/
[1] Levashova N. T., Nikolaeva O. A., Pashkin A. D., “Simulation of the temperature distribution at the water–air interface using the theory of contrast structures”, Moscow University Physics Bulletin, 70:5 (2015), 341–345 | DOI
[2] Ivanov A.A., Vvedenie v okeanografiju, Mir, M., 1978, 574 pp. (in Russian)
[3] Vasil’eva A. B., “Step-like contrasting structures for a singularly perturbed quasilinear second-order differential equation”, Comput. Math. Math. Phys., 35:4 (1995), 411–419 | MR | Zbl
[4] Vasil’eva A. B., Butuzov V. F., Nefedov N. N., “Singularly perturbed problems with boundary and internal layers”, Proc. Steklov Inst. Math., 268 (2010), 258–273 | DOI | MR | Zbl
[5] Butuzov V. F., Levashova N. T., Mel’nikova A. A., “Steplike contrast structure in a singularly perturbed system of equations with different powers of small parameter”, Comput. Math. Math. Phys., 52:11 (2012), 1526–1546 | DOI | MR | Zbl
[6] Levashova N. T., Nefedov N. N., Yagremtsev A. V., “Contrast structures in the reaction-diffusion-advection equations in the case of balanced advection”, Comput. Math. Math. Phys., 53:3 (2013), 273–283 | DOI | DOI | MR | Zbl
[7] Nefedov N. N., Ni M., “Internal layers in the one-dimensional reaction–diffusion equation with a discontinuous reactive term”, Comput. Math. Math. Phys., 55:12 (2015), 2001–2007 | DOI | DOI | MR | Zbl
[8] Levashova N. T., Nefedov N. N., Orlov A. O., “Time-independent reaction–diffusion equation with a discontinuous reactive term”, Comput. Math. Math. Phys., 57:5 (2017), 854–866 | DOI | MR
[9] Vasil'eva A.B., Butuzov V.F., Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian) | MR
[10] Davydova M. A., Levashova N. T., Zakharova S. A., “The Asymptotical Analysis for the Problem of Modeling the Gas Admixture in the Surface Layer of the Atmosphere”, Modeling and Analysis of Information Systems, 23:3 (2016), 283–290 (in Russian) | MR