Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_3_a4, author = {A. A. Bykov and K. E. Ermakova}, title = {Nonstationary equations for the reaction layer with the degenerate equilibrium points}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {309--321}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a4/} }
TY - JOUR AU - A. A. Bykov AU - K. E. Ermakova TI - Nonstationary equations for the reaction layer with the degenerate equilibrium points JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 309 EP - 321 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a4/ LA - ru ID - MAIS_2017_24_3_a4 ER -
%0 Journal Article %A A. A. Bykov %A K. E. Ermakova %T Nonstationary equations for the reaction layer with the degenerate equilibrium points %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 309-321 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a4/ %G ru %F MAIS_2017_24_3_a4
A. A. Bykov; K. E. Ermakova. Nonstationary equations for the reaction layer with the degenerate equilibrium points. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 309-321. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a4/
[1] Butuzov V. F., “On Periodic Solutions to Singularly Perturbed Parabolic Problems in the Case of Multiple Roots of the Degenerate Equation”, Comp. Math. Math. Phys., 51:1 (2011), 40–50 | DOI | MR | Zbl
[2] Butuzov V. F. et al., “On a singularly perturbed initial value problem in the case of a double root of the degenerate equation”, Nonlinear Anal. Theory, Meth. and Appl., 83 (2013), 1–11 | DOI | MR | Zbl
[3] Butuzov V. F., “On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation”, Math. Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl
[4] Alshin A. B., et al., “The traveling wave as a solution of a nonlinear equation in semiconductors with strong spatial dispersion”, Comp. Math. Math Phys., 48:5 (2008), 764–768 | DOI | MR | Zbl
[5] Butuzov V. F., Nefedov N. N., Schneider K. R., “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci., 121:1 (2004), 1973–2079 | DOI | MR | Zbl
[6] Vasil'eva A., Nikitin A., Petrov A., “Stability of contrasting solutions of nonlinear hydromagnetic dynamo equations and magnetic fields reversals in galaxies”, Geophysical and Astrophysical Fluid Dynamics, 78:1–4 (1994), 261–279 | DOI | MR
[7] Bykov A. et al., “Anomalous Persistence of bisymmetric Magnetic Structures in Spiral Galaxies”, MNRAS, 292:1 (1997), 1–10 | DOI
[8] Moss D., Petrov A., Sokoloff D. et al., “The motion of magnetic fronts in spiral galaxies”, Geophysical and Astrophysical Fluid Dynamics, 92:1–2 (2000), 129–149 | DOI | MR
[9] Bozhevol’nov Yu. V., Nefedov N. N., “Front motion in the parabolic reaction-diffusion problem”, Comp. Math. Math. Phys., 50:2 (2010), 264–273 | DOI | MR | Zbl
[10] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum, New York, 1992 | MR | Zbl