Singularly perturbed elliptic Dirichlet problem with three-band boundary layer
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 280-287.

Voir la notice de l'article provenant de la source Math-Net.Ru

A singularly perturbed elliptic problem with Dirichlet boundary conditions is considered in the case of multiple roots of the degenerate equation. A three-zone boundary layer arises in the vicinity of the domain boundary with a different scale of boundary-layer variables and a different behaviour of the solution in different zones. The asymptotic expansion of the solution being in fractional powers of the small parameter, boundary-layer series are constructed using a non-standard algorithm. A complete asymptotic expansion of the solution is constructed and justified.
Keywords: singularly perturbed elliptic equation, case of multiple root of the degenerate equation, asymptotic expansion of boundary layer type solution, three-band boundary layer.
@article{MAIS_2017_24_3_a2,
     author = {V. A. Beloshapko},
     title = {Singularly perturbed elliptic {Dirichlet} problem with three-band boundary layer},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {280--287},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/}
}
TY  - JOUR
AU  - V. A. Beloshapko
TI  - Singularly perturbed elliptic Dirichlet problem with three-band boundary layer
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 280
EP  - 287
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/
LA  - ru
ID  - MAIS_2017_24_3_a2
ER  - 
%0 Journal Article
%A V. A. Beloshapko
%T Singularly perturbed elliptic Dirichlet problem with three-band boundary layer
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 280-287
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/
%G ru
%F MAIS_2017_24_3_a2
V. A. Beloshapko. Singularly perturbed elliptic Dirichlet problem with three-band boundary layer. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 280-287. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/

[1] Vasilieva A. B., Butuzov V. F., “Asymptotic methods in the theory of singular perturbations”, Vysshaya shkola, M., 1990 (in Russian) | MR

[2] Paul C. Fife, “Semilinear elliptic boundary value problems with small parameters”, Archive for Rational Mechanics and Analysis, 52 (1973), 205–232 | MR | Zbl

[3] Butuzov V. F., Beloshapko V. A., “Singularly Perturbed Elliptic Dirichlet Problem with a Multiple Root of the Degenerate Equation”, Modeling and Analysis of Information Systems, 23:5 (2016), 515–528 (in Russian) | MR

[4] Butuzov V. F., “On the Stability and the Attraction Domain of the Stationary Solution of a Singularly Perturbed Parabolic Equation with a Multiple Root of the Degenerate Equation”, Differential Equations, 51:12 (2015), 1569–1582 | DOI | DOI | MR | Zbl

[5] Beloshapko V. A., Butuzov V. F., “Asymptotics of the solution of a singularly perturbed elliptic problem with three-band boundary layer”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1414–1425 | DOI | DOI | MR | Zbl

[6] Beloshapko V. A., Butuzov V. F., “A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation”, Computational Mathematics and Mathematical Physics, 53:8 (2013), 1117–1127 | DOI | DOI | MR | Zbl

[7] Butuzov V. F., “On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation”, Mathematical Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl

[8] Nefedov N. N., “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differential Equations, 31:7 (1995), 1142–1149 | MR | MR | Zbl

[9] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR | Zbl