Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_3_a2, author = {V. A. Beloshapko}, title = {Singularly perturbed elliptic {Dirichlet} problem with three-band boundary layer}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {280--287}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/} }
TY - JOUR AU - V. A. Beloshapko TI - Singularly perturbed elliptic Dirichlet problem with three-band boundary layer JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 280 EP - 287 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/ LA - ru ID - MAIS_2017_24_3_a2 ER -
V. A. Beloshapko. Singularly perturbed elliptic Dirichlet problem with three-band boundary layer. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 280-287. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a2/
[1] Vasilieva A. B., Butuzov V. F., “Asymptotic methods in the theory of singular perturbations”, Vysshaya shkola, M., 1990 (in Russian) | MR
[2] Paul C. Fife, “Semilinear elliptic boundary value problems with small parameters”, Archive for Rational Mechanics and Analysis, 52 (1973), 205–232 | MR | Zbl
[3] Butuzov V. F., Beloshapko V. A., “Singularly Perturbed Elliptic Dirichlet Problem with a Multiple Root of the Degenerate Equation”, Modeling and Analysis of Information Systems, 23:5 (2016), 515–528 (in Russian) | MR
[4] Butuzov V. F., “On the Stability and the Attraction Domain of the Stationary Solution of a Singularly Perturbed Parabolic Equation with a Multiple Root of the Degenerate Equation”, Differential Equations, 51:12 (2015), 1569–1582 | DOI | DOI | MR | Zbl
[5] Beloshapko V. A., Butuzov V. F., “Asymptotics of the solution of a singularly perturbed elliptic problem with three-band boundary layer”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1414–1425 | DOI | DOI | MR | Zbl
[6] Beloshapko V. A., Butuzov V. F., “A singularly perturbed elliptic problem in the case of a multiple root of the degenerate equation”, Computational Mathematics and Mathematical Physics, 53:8 (2013), 1117–1127 | DOI | DOI | MR | Zbl
[7] Butuzov V. F., “On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation”, Mathematical Notes, 94:1 (2013), 60–70 | DOI | DOI | MR | Zbl
[8] Nefedov N. N., “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differential Equations, 31:7 (1995), 1142–1149 | MR | MR | Zbl
[9] Pao C. V., Nonlinear parabolic and elliptic equations, Plenum Press, New York, 1992 | MR | Zbl