Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_3_a1, author = {E. A. Antipov and V. T. Volkov and N. T. Levashova and N. N. Nefedov}, title = {Moving front solution of the reaction-diffusion problem}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {259--279}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/} }
TY - JOUR AU - E. A. Antipov AU - V. T. Volkov AU - N. T. Levashova AU - N. N. Nefedov TI - Moving front solution of the reaction-diffusion problem JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 259 EP - 279 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/ LA - ru ID - MAIS_2017_24_3_a1 ER -
%0 Journal Article %A E. A. Antipov %A V. T. Volkov %A N. T. Levashova %A N. N. Nefedov %T Moving front solution of the reaction-diffusion problem %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 259-279 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/ %G ru %F MAIS_2017_24_3_a1
E. A. Antipov; V. T. Volkov; N. T. Levashova; N. N. Nefedov. Moving front solution of the reaction-diffusion problem. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 259-279. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/
[1] Vasil'eva A.B., Butuzov V.F, Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian) | MR
[2] Nefedov N. N., “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability”, Differential Equations, 36:2 (2000), 298–305 | DOI | MR | MR | Zbl
[3] Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Comput. Math. Math. Phys., 46:4 (2006), 585–593 | DOI | MR | Zbl
[4] Bozhevol'nov Yu. V., Nefedov N. N., “Front motion in a parabolic reaction-diffusion problem”, Comput. Math. Math. Phys., 50:2 (2010), 264–273 | DOI | MR | Zbl
[5] Antipov E. A., Levashova N. T., Nefedov N.N., “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Comput. Math. Math. Phys., 54:10 (2014), 1536–1549 | DOI | DOI | MR | Zbl
[6] Nefedov N., Yagremtsev A., “On extension of asymptotic comparison principle for time periodic reaction-diffusion-advection systems with boundary and internal layers”, Lecture Notes in Computer Science, 9045, 2015, 62–72 | DOI | MR
[7] Levashova N. T., Melnikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR | Zbl
[8] Nefedov N.N., “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differential Equations, 31:7 (1995), 1077–1085 | MR | Zbl
[9] Nefedov N. N., Davydova M. A., “Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems”, Differential Equations, 48:5 (2012), 745–755 | DOI | MR | Zbl
[10] Butuzov V. F., Levashova N. T., Melnikova A.A., “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Comput. Math. Math. Phys., 53:9 (2013), 1239–1259 | DOI | MR | Zbl
[11] Volkov V. T., Nefedov N. N., Antipov E. A., “Asymptotic-numerical method for moving fronts in two-dimensional r-d-a problems”, Lecture Notes in Computer Science, 9045, 2015, 408–416 | DOI | MR | Zbl
[12] Volpert A. I., Volpert V. A., Volpert V. A., Traveling wave solutions of parabolic systems, American Mathematical Soc., 1994 | MR | Zbl
[13] Sattinger D. H., “Monotone Methods in Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1001 | DOI | MR
[14] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR | Zbl