Moving front solution of the reaction-diffusion problem
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 259-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the moving front solution of the reaction-diffusion initial-boundary value problem with a small diffusion coefficient. Problems in such statements can be used to model physical processes associated with the propagation of autowave fronts, in particular, in biophysics or in combustion. The moving front solution is a function the distinctive feature of which is the presence in the domain of its definition of a subdomain where the function has a large gradient. This subdomain is called an internal transition layer. In the nonstationary case, the position of the transition layer varies with time which, as it is well known, complicates the numerical solution of the problem as well as the justification of the correctness of numerical calculations. In this case the analytical method is an essential component of the study. In the paper, asymptotic methods are applied for analytical investigation of the solution of the problem posed. In particular, an asymptotic approximation of the solution as an expansion in powers of a small parameter is constructed by the use of the Vasil'eva algorithm and the existence theorem is carried out using the asymptotic method of differential inequalities. The methods used also make it possible to obtain an equation describing the motion of the front. For this purpose a transition to local coordinates takes place in the region of the front localization. In the present paper, in comparison with earlier publications dealing with two-dimensional problems with internal transition layers the transition to local coordinates in the vicinity of the front has been modified, that led to the simplification of the algorithm of determining the equation of the curve motion.
Mots-clés : reaction-diffusion problem
Keywords: two-dimensional moving front, asymptotic representation, small parameter, asymptotic method of differential inequalities.
@article{MAIS_2017_24_3_a1,
     author = {E. A. Antipov and V. T. Volkov and N. T. Levashova and N. N. Nefedov},
     title = {Moving front solution of the reaction-diffusion problem},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {259--279},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/}
}
TY  - JOUR
AU  - E. A. Antipov
AU  - V. T. Volkov
AU  - N. T. Levashova
AU  - N. N. Nefedov
TI  - Moving front solution of the reaction-diffusion problem
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 259
EP  - 279
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/
LA  - ru
ID  - MAIS_2017_24_3_a1
ER  - 
%0 Journal Article
%A E. A. Antipov
%A V. T. Volkov
%A N. T. Levashova
%A N. N. Nefedov
%T Moving front solution of the reaction-diffusion problem
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 259-279
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/
%G ru
%F MAIS_2017_24_3_a1
E. A. Antipov; V. T. Volkov; N. T. Levashova; N. N. Nefedov. Moving front solution of the reaction-diffusion problem. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 3, pp. 259-279. http://geodesic.mathdoc.fr/item/MAIS_2017_24_3_a1/

[1] Vasil'eva A.B., Butuzov V.F, Asimptoticheskie metody v teorii singuljarnyh vozmushhenij, Vysshaja shkola, M., 1990, 208 pp. (in Russian) | MR

[2] Nefedov N. N., “An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics, and stability”, Differential Equations, 36:2 (2000), 298–305 | DOI | MR | MR | Zbl

[3] Volkov V. T., Nefedov N. N., “Development of the asymptotic method of differential inequalities for investigation of periodic contrast structures in reaction-diffusion equations”, Comput. Math. Math. Phys., 46:4 (2006), 585–593 | DOI | MR | Zbl

[4] Bozhevol'nov Yu. V., Nefedov N. N., “Front motion in a parabolic reaction-diffusion problem”, Comput. Math. Math. Phys., 50:2 (2010), 264–273 | DOI | MR | Zbl

[5] Antipov E. A., Levashova N. T., Nefedov N.N., “Asymptotics of the front motion in the reaction-diffusion-advection problem”, Comput. Math. Math. Phys., 54:10 (2014), 1536–1549 | DOI | DOI | MR | Zbl

[6] Nefedov N., Yagremtsev A., “On extension of asymptotic comparison principle for time periodic reaction-diffusion-advection systems with boundary and internal layers”, Lecture Notes in Computer Science, 9045, 2015, 62–72 | DOI | MR

[7] Levashova N. T., Melnikova A. A., “Step-like contrast structure in a singularly perturbed system of parabolic equations”, Differential Equations, 51:3 (2015), 342–361 | DOI | DOI | MR | Zbl

[8] Nefedov N.N., “The method of differential inequalities for some classes of nonlinear singularly perturbed problems with internal layers”, Differential Equations, 31:7 (1995), 1077–1085 | MR | Zbl

[9] Nefedov N. N., Davydova M. A., “Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems”, Differential Equations, 48:5 (2012), 745–755 | DOI | MR | Zbl

[10] Butuzov V. F., Levashova N. T., Melnikova A.A., “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Comput. Math. Math. Phys., 53:9 (2013), 1239–1259 | DOI | MR | Zbl

[11] Volkov V. T., Nefedov N. N., Antipov E. A., “Asymptotic-numerical method for moving fronts in two-dimensional r-d-a problems”, Lecture Notes in Computer Science, 9045, 2015, 408–416 | DOI | MR | Zbl

[12] Volpert A. I., Volpert V. A., Volpert V. A., Traveling wave solutions of parabolic systems, American Mathematical Soc., 1994 | MR | Zbl

[13] Sattinger D. H., “Monotone Methods in Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1001 | DOI | MR

[14] Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR | Zbl