Optimization problems with averaging over the variables
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 227-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problems of nonlinear programming, criteria and limitations depend on the variables averaged. It is shown that if these problems have solutions, the Lagrangian reaches the maximum for the variables, which are averaged. The functions defining the problem can not be differentiable and continuous on these variables, the set of possible values may contain isolated points. In variational problems there can be no solution in the class of piecewise continuous functions of the variables, but there can be a generalized solution in which these variables change in the sliding mode, and the optimality criterion tends to its upper edge. If in such problems the solution in the class of piecewise-continuous functions exists, the conditions of optimality of this solution are in the form of the Hamiltonian function of the maximum principle. The relationship between the average over time and across multiple variables is considered.
Keywords: the average optimization, expansion of the set of admissible equivalence extension, variation of probability measures, the conditions in the form of the maximum principle.
@article{MAIS_2017_24_2_a7,
     author = {A. M. Tsirlin},
     title = {Optimization problems with averaging over the variables},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {227--238},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a7/}
}
TY  - JOUR
AU  - A. M. Tsirlin
TI  - Optimization problems with averaging over the variables
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 227
EP  - 238
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a7/
LA  - ru
ID  - MAIS_2017_24_2_a7
ER  - 
%0 Journal Article
%A A. M. Tsirlin
%T Optimization problems with averaging over the variables
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 227-238
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a7/
%G ru
%F MAIS_2017_24_2_a7
A. M. Tsirlin. Optimization problems with averaging over the variables. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 227-238. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a7/

[1] Tsirlin A. M., Optimalnie zikly i ziklisheskie regimi, Energoatomizdat, M., 1983 (in Russian)

[2] Jang L., Lekzii po variazionnomu ishisleniju i teoriin optimalnogo upravlenija, Mir, M., 1977 (in Russian)

[3] Fromovitz St., “Non-linear programmingn with randomisation”, Manag. Sci. A., 11:9 (1965) | MR | Zbl

[4] Himmelblau D. M., Applied Nonlinear Programming, N-Y, 1972

[5] Tsirlin A. M., Metodi usrednennoy optimizazii i ix prilogenija, Fizmatlit, M., 1997 (in Russian) | MR

[6] Tsirlin A. M., “Zadashi i metodi usrednennoy optimizazii”, Trudi instituta im. Steklova, 261 (2008), 276–292 (in Russian) | MR | Zbl

[7] Afanasyev A. P., Dicusar V. V., Milutin A. A., Shukanov C. A., Neobxodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990 (in Russian) | MR

[8] Dubovizky A. J., Milutin A. A., “Teorija prinzipa maksimuma”, Metodi teorii ecstremalnix zadash v ekonomike, Nauka, M., 1981, 6–47 (in Russian)

[9] Tsirlin A. M., “Optimizacija v srednem i skolzjashie regimi v zadashax optimalnogo upravlenija”, Izv. AN SSSR. Texn. kibernetika, 1974, no. 2, 143–151 (in Russian) | MR | Zbl

[10] Rozonoer L. I., “The Maximum Principle in the theory of optimal systems”, Autom. Remote Control, 20:10 (1959), 1320–1334 | MR

[11] Tsirlin A. M., “Optimality conditions of sliding modes and the maximum principle for control problems with the scalar argument”, Autom. Remote Control, 70:5 (2009), 839–854 | DOI | MR | Zbl