On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 205-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate interrelations between the Tate conjecture for divisors on a fibred variety over a finite field and the Tate conjecture for divisors on the generic scheme fibre under the condition that the generic scheme fibre has zero irregularity. Let $\pi:X\to C$ be a surjective morphism of smooth projective varieties over a finite field $\mathbb{F}_q$ of characteristic $p$, $C$ is a curve and the generic scheme fibre of $\pi$ is a smooth variety $V$ over the field $k=\kappa(C)$ of rational functions of the curve $C$, $\overline k$ is an algebraic closure of the field $k$, $k^s$ is its separable closure, $\operatorname{NS}(V)$ is the Néron–Severi group of classes of divisors on the variety $V$ modulo algebraic equivalence, and assume that the following conditions hold: $H^1(V\otimes\overline k,\mathcal O_{V\otimes\,\overline k})=0$, $\operatorname{NS}(V)=\operatorname{NS}(V\otimes\overline k)$. If, for a prime number $l$ not dividing ${\operatorname{Card}}([\operatorname{NS}(V)]_{\operatorname{tors}})$ and different from the characteristic of the field $\mathbb{F}_q$, the following relation holds $\operatorname{NS}(V)\otimes\mathbb{Q}_l\,\,\widetilde{\rightarrow}\,\,[H^2(V\otimes k^{\operatorname{s}},\mathbb{Q}_l(1))]^{\operatorname{Gal}( k^{\operatorname{s}}/k)} $ (in other words, if the Tate conjecture for divisors on $V$ holds), then for any prime number $l\neq\operatorname{char}(\mathbb{F}_q)$ the Tate conjecture holds for divisors on $X$: $\operatorname{NS}(X)\otimes\mathbb{Q}_l\,\,\widetilde{\rightarrow} \,\,[H^2(X\otimes\overline{\mathbb{F}}_q,\mathbb{Q}_l(1))]^{\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)}$. In particular, it follows from this result that the Tate conjecture for divisors on an arithmetic model of a $\operatorname{K}3$ surface over a sufficiently large global field of finite characteristic different from $2$ holds as well.
Mots-clés : Tate conjecture
Keywords: global field, Brauer group, arithmetic model, $\operatorname{K}3$ surface.
@article{MAIS_2017_24_2_a5,
     author = {T. V. Prokhorova},
     title = {On the {Tate} conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {205--214},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/}
}
TY  - JOUR
AU  - T. V. Prokhorova
TI  - On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 205
EP  - 214
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/
LA  - ru
ID  - MAIS_2017_24_2_a5
ER  - 
%0 Journal Article
%A T. V. Prokhorova
%T On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 205-214
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/
%G ru
%F MAIS_2017_24_2_a5
T. V. Prokhorova. On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 205-214. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/

[1] J.S. Milne, “Values of zeta functions of varieties over finite fields”, Amer. J. Math., 108 (1986), 297–360 | DOI | MR | Zbl

[2] J. Tate, “Conjectures on algebraic cycles in l-adic cohomology”, Proc. Symposia in Pure Math., 55, 1994, 71–83 | DOI | MR | Zbl

[3] Colliot-Thélène J.-L., Skorobogatov A. N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl

[4] Milne J. S., Etale cohomology, Princeton Univ. Press, Princeton, 1980 | MR | MR | Zbl

[5] Tankeev S. G., “On the Brauer group of arithmetic model of a hyperk$\ddot a$hler variety over a number field”, Izv. Math., 79:3 (2015), 623–644 | DOI | DOI | MR | Zbl

[6] Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827 | DOI | MR | Zbl

[7] Tankeev S. G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029 | DOI | DOI | MR | Zbl

[8] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969 | MR | MR | Zbl

[9] Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923 | DOI | MR | Zbl

[10] Bourbaki N., Éléments de Mathématique. Algébre, v. II, Hermann, Paris, 1963 | MR | MR

[11] Proc. Internat. Conf. Brighton (1965), eds. Cassels G. W. S., Frölich A., Academic Press, London; Thompson, Washington, DC, 1967 | MR | Zbl

[12] Madapusi Pera K., “The Tate conjecture for $\operatorname{K}3$ surfaces in odd characteristic Descent on fibrations over the projective line”, Invent. math., 201 (2015), 625–668 | DOI | MR | Zbl