On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 205-214
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate interrelations between the Tate conjecture for divisors
on a fibred variety over a finite field and the Tate conjecture for divisors on the generic scheme
fibre under the condition that the generic scheme fibre
has zero irregularity. Let $\pi:X\to C$ be a surjective morphism of smooth projective varieties
over a finite field $\mathbb{F}_q$ of characteristic $p$, $C$ is a curve and the generic scheme fibre of $\pi$ is a smooth variety $V$ over the field $k=\kappa(C)$
of rational functions of the curve $C$, $\overline k$ is an algebraic closure of the field $k$, $k^s$ is its separable closure,
$\operatorname{NS}(V)$ is the Néron–Severi group of classes of divisors on the variety $V$
modulo algebraic equivalence, and assume that the following conditions hold:
$H^1(V\otimes\overline k,\mathcal O_{V\otimes\,\overline k})=0$, $\operatorname{NS}(V)=\operatorname{NS}(V\otimes\overline k)$.
If, for a prime number $l$ not dividing ${\operatorname{Card}}([\operatorname{NS}(V)]_{\operatorname{tors}})$ and different from the characteristic of the field
$\mathbb{F}_q$, the following relation holds $\operatorname{NS}(V)\otimes\mathbb{Q}_l\,\,\widetilde{\rightarrow}\,\,[H^2(V\otimes
k^{\operatorname{s}},\mathbb{Q}_l(1))]^{\operatorname{Gal}( k^{\operatorname{s}}/k)}
$ (in other words, if the Tate conjecture for divisors on $V$ holds), then for
any prime number $l\neq\operatorname{char}(\mathbb{F}_q)$ the Tate conjecture holds for divisors on $X$:
$\operatorname{NS}(X)\otimes\mathbb{Q}_l\,\,\widetilde{\rightarrow}
\,\,[H^2(X\otimes\overline{\mathbb{F}}_q,\mathbb{Q}_l(1))]^{\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)}$. In particular, it follows from this result that the Tate conjecture for divisors on an
arithmetic model of a $\operatorname{K}3$ surface over a sufficiently large global field
of finite characteristic different from $2$ holds as well.
Mots-clés :
Tate conjecture
Keywords: global field, Brauer group, arithmetic model, $\operatorname{K}3$ surface.
Keywords: global field, Brauer group, arithmetic model, $\operatorname{K}3$ surface.
@article{MAIS_2017_24_2_a5,
author = {T. V. Prokhorova},
title = {On the {Tate} conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {205--214},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/}
}
TY - JOUR AU - T. V. Prokhorova TI - On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 205 EP - 214 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/ LA - ru ID - MAIS_2017_24_2_a5 ER -
%0 Journal Article %A T. V. Prokhorova %T On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 205-214 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/ %G ru %F MAIS_2017_24_2_a5
T. V. Prokhorova. On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 205-214. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/