Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_2_a5, author = {T. V. Prokhorova}, title = {On the {Tate} conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {205--214}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/} }
TY - JOUR AU - T. V. Prokhorova TI - On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 205 EP - 214 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/ LA - ru ID - MAIS_2017_24_2_a5 ER -
%0 Journal Article %A T. V. Prokhorova %T On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 205-214 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/ %G ru %F MAIS_2017_24_2_a5
T. V. Prokhorova. On the Tate conjectures for divisors on a fibred variety and on its generic scheme fibre in the case of finite characteristic. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 2, pp. 205-214. http://geodesic.mathdoc.fr/item/MAIS_2017_24_2_a5/
[1] J.S. Milne, “Values of zeta functions of varieties over finite fields”, Amer. J. Math., 108 (1986), 297–360 | DOI | MR | Zbl
[2] J. Tate, “Conjectures on algebraic cycles in l-adic cohomology”, Proc. Symposia in Pure Math., 55, 1994, 71–83 | DOI | MR | Zbl
[3] Colliot-Thélène J.-L., Skorobogatov A. N., Swinnerton-Dyer P., “Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points”, Invent. Math., 134:3 (1998), 579–650 | DOI | MR | Zbl
[4] Milne J. S., Etale cohomology, Princeton Univ. Press, Princeton, 1980 | MR | MR | Zbl
[5] Tankeev S. G., “On the Brauer group of arithmetic model of a hyperk$\ddot a$hler variety over a number field”, Izv. Math., 79:3 (2015), 623–644 | DOI | DOI | MR | Zbl
[6] Lang S., Weil A., “Number of points of varieties in finite fields”, Amer. J. Math., 76:4 (1954), 819–827 | DOI | MR | Zbl
[7] Tankeev S. G., “On the Brauer group of arithmetic scheme. II”, Izv. Math., 67:5 (2003), 1007–1029 | DOI | DOI | MR | Zbl
[8] Atiyah M. F., Macdonald I. G., Introduction to commutative algebra, Addison-Wesley Publ. Co., Massachusets, 1969 | MR | MR | Zbl
[9] Skorobogatov A. N., “Descent on fibrations over the projective line”, Amer. J. Math., 118:5 (1996), 905–923 | DOI | MR | Zbl
[10] Bourbaki N., Éléments de Mathématique. Algébre, v. II, Hermann, Paris, 1963 | MR | MR
[11] Proc. Internat. Conf. Brighton (1965), eds. Cassels G. W. S., Frölich A., Academic Press, London; Thompson, Washington, DC, 1967 | MR | Zbl
[12] Madapusi Pera K., “The Tate conjecture for $\operatorname{K}3$ surfaces in odd characteristic Descent on fibrations over the projective line”, Invent. math., 201 (2015), 625–668 | DOI | MR | Zbl