Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_1_a5, author = {S. D. Glyzin and A. Yu. Kolesov and E. A. Marushkina}, title = {Relaxation oscillations in a system of two pulsed synaptically coupled neurons}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {82--93}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a5/} }
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - E. A. Marushkina TI - Relaxation oscillations in a system of two pulsed synaptically coupled neurons JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 82 EP - 93 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a5/ LA - ru ID - MAIS_2017_24_1_a5 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A E. A. Marushkina %T Relaxation oscillations in a system of two pulsed synaptically coupled neurons %J Modelirovanie i analiz informacionnyh sistem %D 2017 %P 82-93 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a5/ %G ru %F MAIS_2017_24_1_a5
S. D. Glyzin; A. Yu. Kolesov; E. A. Marushkina. Relaxation oscillations in a system of two pulsed synaptically coupled neurons. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 1, pp. 82-93. http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a5/
[1] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “On a Method for Mathematical Modeling of Chemical Synapses”, Differential Equations, 49:10 (2013), 1193–1210 | DOI | MR | MR | Zbl
[2] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: I”, Differential Equations, 47:7 (2011), 927–941 | DOI | MR | Zbl
[3] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: II”, Differential Equations, 47:12 (2011), 1697–1713 | DOI | MR | Zbl
[4] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaxation self-oscillations in neuron systems: III”, Differential Equations, 48:2 (2012), 159–175 | DOI | MR | Zbl
[5] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Discrete autowaves in neural systems”, Computational Mathematics and Mathematical Physics, 52:5 (2012), 702–719 | DOI | MR | Zbl
[6] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Self-excited relaxation oscillations in networks of impulse neurons”, Russian Math. Surveys, 70:3 (2015), 383–452 | DOI | DOI | MR | Zbl
[7] Somers D., Kopell N., “Rapid synchronization through fast threshold modulation”, Biol. Cybern., 68 (1993), 393–407 | DOI
[8] Somers D., Kopell N., “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions”, J. Math. Biol., 33 (1995), 261–280 | MR | Zbl
[9] Mishchenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, M., 1975, 247 pp. (in Russian) | MR
[10] FitzHugh R. A., “Impulses and physiological states in theoretical models of nerve membrane”, Biophysical J., 1 (1961), 445–466 | DOI
[11] Terman D., “An Introduction to Dynamical Systems and Neuronal Dynamics”, Tutorials in Mathematical Biosciences I, Lecture Notes in Mathematics, 1860, 2005, 21–68 | DOI | MR
[12] Hutchinson G. E., “Circular causal systems in ecology”, Ann. N.Y. Acad. of Sci., 50 (1948), 221–246 | DOI
[13] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “A modification of Hutchinson's equation”, Computational Mathematics and Mathematical Physics, 50:12 (2010), 1990–2002 | DOI | MR | Zbl
[14] Glyzin S. D., Kiseleva E. O., “The account of delay in a connecting element between two oscillators”, Model. Anal. Inform. Syst., 17:2 (2010), 133–143 (in Russian)
[15] Glyzin S. D., Soldatova E. A., “The factor of delay in a system of coupled oscillators FitzHugh–Nagumo”, Model. Anal. Inform. Syst., 17:3 (2010), 134–143 (in Russian)
[16] Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh., “Relay with delay and its $C^1$-approximation”, Proceedings of the Steklov Institute of Mathematics, 216 (1997), 119–146 | MR | Zbl
[17] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Modeling the Bursting Effect in Neuron Systems”, Math. Notes, 93:5 (2013), 676–690 | DOI | DOI | MR | Zbl
[18] Glyzin S. D., Marushkina E. A., “Relaxation Cycles in a Generalized Neuron Model with Two Delays”, Model. Anal. Inform. Syst., 20:6 (2013), 179–199 (in Russian)
[19] Chay T. R., Rinzel J., “Bursting, beating, and chaos in an excitable membrane model”, Biophys. J., 47:3 (1985.), 357–366 | DOI
[20] Ermentrout G. B., Kopell N., “Parabolic bursting in an excitable system coupled with a slow oscillation”, SIAM J. Appl. Math., 46:2 (1986), 233–253 | DOI | MR | Zbl
[21] Izhikevich E., “Neural excitability, spiking and bursting”, International Journal of Bifurcation and Chaos, 10:6 (2000), 1171–1266 | DOI | MR | Zbl
[22] Rabinovich M. I., Varona P., Selverston A. I., Abarbanel H. D. I., “Dynamical principles in neuroscience”, Rev. Mod. Phys., 78 (2006), 1213–1265 | DOI
[23] Coombes S., Bressloff P. C., Bursting: the genesis of rhythm in the nervous system, World Scientific Publishing Company, 2005 | MR | Zbl