Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2017_24_1_a4, author = {P. N. Nesterov}, title = {Asymptotics for solutions of harmonic oscillator with integral perturbation}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {64--81}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a4/} }
TY - JOUR AU - P. N. Nesterov TI - Asymptotics for solutions of harmonic oscillator with integral perturbation JO - Modelirovanie i analiz informacionnyh sistem PY - 2017 SP - 64 EP - 81 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a4/ LA - ru ID - MAIS_2017_24_1_a4 ER -
P. N. Nesterov. Asymptotics for solutions of harmonic oscillator with integral perturbation. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 1, pp. 64-81. http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a4/
[1] Bellman R., Stability theory of differential equations, McGraw-Hill, New York, 1953 | MR | Zbl
[2] Burd V. Sh., Karakulin V. A., “On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients”, Math. Notes, 64:5 (1998), 571–578 | DOI | DOI | MR | MR | Zbl
[3] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York, 1955 | MR | Zbl
[4] Nesterov P. N., “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients”, Differ. Equ., 43:6 (2007), 745–756 | DOI | MR | Zbl
[5] Nesterov P. N., Agafonchikov E. N., “Specific features of oscillations in adiabatic oscillators with delay”, Automatic Control and Computer Sciences, 49:7 (2015), 582–596 | DOI
[6] Burton T. A., Volterra integral and differential equations, Elsevier, Amsterdam, 2005 | MR | Zbl
[7] Eastham M. S. P., The asymptotic solution of linear differential systems, Clarendon Press, Oxford, 1989 | MR | Zbl
[8] Grace S. R., Lalli B. S., “Asymptotic behaviour of certain second order integro-differential equations”, J. Math. Anal. Appl., 76 (1980), 84–90 | DOI | MR | Zbl
[9] Harris W. A. (Jr.), Lutz D. A., “Asymptotic integration of adiabatic oscillators”, J. Math. Anal. Appl., 51:1 (1975), 76–93 | DOI | MR | Zbl
[10] Harris W. A. (Jr.), Lutz D. A., “A unified theory of asymptotic integration”, J. Math. Anal. Appl., 57:3 (1977), 571–586 | DOI | MR | Zbl
[11] Levinson N., “The asymptotic nature of solutions of linear systems of differential equations”, Duke Math. J., 15:1 (1948), 111–126 | DOI | MR | Zbl
[12] Naulin R., Vanegas C. J., “Asymptotic formulas for the solutions of integro-differential equations”, Acta Math. Hungar., 89:4 (2000), 281–299 | DOI | MR | Zbl
[13] Nesterov P., “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients”, Monatsh. Math., 171 (2013), 217–240 | DOI | MR | Zbl
[14] Wintner A., “The adiabatic linear oscillator”, Amer. J. Math., 68 (1946), 385–397 | DOI | MR | Zbl
[15] Wintner A., “Asymptotic integration of the adiabatic oscillator”, Amer. J. Math., 69 (1946), 251–272 | DOI | MR
[16] Yang E. H., “Asymptotic behaviour of certain second order integro-differential equations”, J. Math. Anal. Appl., 106 (1985), 132–139 | DOI | MR | Zbl