Existence and stability of the solutions with internal layers in multidimensional problems of the reaction-diffusion-advection type with balanced nonlinearity
Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 1, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider a multidimensional singularly perturbed problem for an elliptic equation referred to as the stationary reaction-diffusion-advection equation in applications. We formulate basic conditions of the existence of solutions with internal transition layers (contrust structures), and we construct an asymptotic approximation of an arbitrary-order accuracy to such solutions. We use a more efficient method for localizing the transition surface, which permits one to develop our approach to a more complicated case of balanced advection and reaction (the so-called critical case). To justify the constructed asymptotics, we use and develop, to this class of problems, an asymptotic method of differential inequalities, which also permits one to prove the Lyapunov stability of such solutions, as stationary solutions of the corresponding parabolic problems.
Keywords: problems of the reaction-diffusion-advection type, solutions with internal layers, contrust structures.
@article{MAIS_2017_24_1_a2,
     author = {M. A. Davydova and N. N. Nefedov},
     title = {Existence and stability of the solutions with internal layers in multidimensional problems of the reaction-diffusion-advection type with balanced nonlinearity},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a2/}
}
TY  - JOUR
AU  - M. A. Davydova
AU  - N. N. Nefedov
TI  - Existence and stability of the solutions with internal layers in multidimensional problems of the reaction-diffusion-advection type with balanced nonlinearity
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2017
SP  - 31
EP  - 38
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a2/
LA  - ru
ID  - MAIS_2017_24_1_a2
ER  - 
%0 Journal Article
%A M. A. Davydova
%A N. N. Nefedov
%T Existence and stability of the solutions with internal layers in multidimensional problems of the reaction-diffusion-advection type with balanced nonlinearity
%J Modelirovanie i analiz informacionnyh sistem
%D 2017
%P 31-38
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a2/
%G ru
%F MAIS_2017_24_1_a2
M. A. Davydova; N. N. Nefedov. Existence and stability of the solutions with internal layers in multidimensional problems of the reaction-diffusion-advection type with balanced nonlinearity. Modelirovanie i analiz informacionnyh sistem, Tome 24 (2017) no. 1, pp. 31-38. http://geodesic.mathdoc.fr/item/MAIS_2017_24_1_a2/

[1] Nefedov N. N., “The method of differential inequalities for nonlinear singularly perturbed problems with contrast structures of step type in the critical case”, Differ. Equ., 32:11 (1996), 1526–1534 | MR | Zbl

[2] Nefedov N. N., Davydova M. A., “Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems”, Differ. Equ., 48:5 (2012), 745–755 | DOI | MR | Zbl

[3] Vasil'eva A.B., Butuzov V.F., Nefedov N.N., “Singularly perturbed problems with boundary and internal layers”, Proc. Steklov Inst. Math., 268 (2010), 258–273 | DOI | MR | Zbl

[4] Davydova M. A., “Existence and stability of solutions with boundary layers in multidimensional singularly perturbed reaction-diffusion-advection problems”, Math. Notes, 98:6 (2015), 909–919 | DOI | MR | Zbl

[5] Nefedov N. N., Davydova M. A., “Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations”, Differ. Equ., 49:6 (2013), 688–706 | DOI | MR | Zbl