@article{MAIS_2016_23_6_a8,
author = {Yu. A. Belov and S. I. Vovchok},
title = {Generation of a social network graph by using {Apache} {Spark}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {777--783},
year = {2016},
volume = {23},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a8/}
}
Yu. A. Belov; S. I. Vovchok. Generation of a social network graph by using Apache Spark. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 6, pp. 777-783. http://geodesic.mathdoc.fr/item/MAIS_2016_23_6_a8/
[1] Chikhradze K. K. et al., “On a model of social network with user communities for distributed generation of random social graphs”, Machine Learning and Data Analysis, 1:8 (2014), 1027–1047 (in Russian)
[2] Yang J., Leskovec J., “Community-affiliation graph model for overlapping network community detection”, IEEE 12th Conference (International) on Data Mining, 2012
[3] Raigorodskii A., “Models of Random Graphs and Their Applications to the Web-Graphs Analysis”, RUSSIR-2015 (Lomonosov Moscow University, Moscow Istitute of Physics and Technology, Yandex, Moscow, Russia, 25–29 August, 2015)
[4] Erdos P., Renyi A., “On the evolution of random graphs”, Bull. Inst. Int. Statist. Tokyo, 38 (1961), 343–347 | MR | Zbl
[5] Aiello W., Chung F., Lu L., “On the evolution of random graphs”, A random graph model for power law graphs http://people.math.sc.edu/lu/papers/power.pdf
[6] Karau K. et al., Learning Spark: Lightning-Fast Data Analysis, DMK Press, M., 2015, 304 pp. (in Russian)
[7] Vovchok S. I., “Sozdanie metoda klasterizatsii grafa sotsialnoy seti”, Novye informatsionnye tekhnologii v nauke, Sbornik statey Mezhdunarodnoy nauchno-prakticheskoy konferentsii MTsII OMEGA SAYNS, v. 2, 2016, 34–36 (in Russian)