Modelling of non-isothermal flow abnormally viscous fluid in the channels with various geometry of boundaries
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 326-333.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we analyzed the flat non-isothermal stationary flow of abnormally viscous fluid in the channels with asymmetric boundary conditions and an unknown output boundary. The geometry of the channels in which the problem is considered, is such regions, that at the transition to bipolar a system of coordinates map into rectangles. This greatly simplifies the boundary conditions, since it is possible to use an orthogonal grid and boundary conditions are given in its nodes. Fields of this type are often found in applications. The boundary conditions are set as follows: the liquid sticks to the boundaries of the channels, which rotate at different speeds and have different radius and temperature; moreover, temperature at the entrance to deformation is known, while on the boundary with the surface the material has the surface temperature; the pressure on the enter and exit of the region becomes zero. The rheological model only takes into account the anomaly of viscosity. The material is not compressible. This process can be described by a system consisting of continuity equations, the equations of conservation of momentum and an energy equation: $\nabla_{i} v^{i} = 0, \quad \rho v^{i} \nabla_{i} v^{i} = -g^{ij}\nabla_{i} P + \nabla_{i} \tau^{ij}$,$\lambda\nabla^i\nabla_i T - \rho c_v v^i \nabla_i T + \tau^{ij} e_{ij} = 0$, rheological properties of the liquid are described by the equation: $ P^{ij} = -g^{ij}P + \tau^{ij}, \quad \tau^{ij} = \mu' e^{ij}$ where $ u,v $ — coordinates of environmental speeds, $ P $ — the hydrostatic pressure, $ T $ — temperature, $ c_v $ — specific heat, $ \rho $ — density, $ \lambda $ — thermal conductivity, $ \tau^{ij} $ — a viscous stress tensor, $ P^{ij} $ — a stress tensor, $ e^{ij} $ — a rate of the deformation tensor, $ g^{ij} $ — the metric tensor. In this paper, we propose an algorithm for calculating a non-isothermal flow for an arbitrary continuous function that describes the flow curve.
@article{MAIS_2016_23_3_a8,
     author = {K. V. Litvinov},
     title = {Modelling of non-isothermal flow abnormally viscous fluid in the channels with various geometry of boundaries},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {326--333},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a8/}
}
TY  - JOUR
AU  - K. V. Litvinov
TI  - Modelling of non-isothermal flow abnormally viscous fluid in the channels with various geometry of boundaries
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 326
EP  - 333
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a8/
LA  - ru
ID  - MAIS_2016_23_3_a8
ER  - 
%0 Journal Article
%A K. V. Litvinov
%T Modelling of non-isothermal flow abnormally viscous fluid in the channels with various geometry of boundaries
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 326-333
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a8/
%G ru
%F MAIS_2016_23_3_a8
K. V. Litvinov. Modelling of non-isothermal flow abnormally viscous fluid in the channels with various geometry of boundaries. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 326-333. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a8/

[1] Mildman C., Techenie polimerov, Mir, 1971 (in Russian)

[2] Belkin N. G., Litvinov V. V., Petrushanskiy V. Yu., “Mekhanika zhidkosti i gaza”, Izvestiya akademii nauk SSSR, 1976 (in Russian)

[3] Van de Rotten B., A limited memory Broyden method to solve high-dimensional systems of nonlinear equations, University of Leiden, 2003

[4] Broyden C. G., “On infinite soluble groups”, Math. Comp., 19 (1965), 577–593 | DOI | MR | Zbl

[5] Kvaalen, Eric, “A faster Broyden method”, BIT Numerical Mathematics (SIAM), 31 (1991), 369–372 | DOI | MR | Zbl

[6] Vinogradov G. V., Malkin A. Ya., Reologiya polimerov, Khimiya, 1977, 440 pp. (in Russian)

[7] Malkin A. Ya., Isaev A. I., Reologiya kontseptsii, metody, prilozheniya, Professiya, 2007, 560 pp. (in Russian)

[8] Sokolnikoff I. S., Tensor analysis: Theory and Applications to Geometry and Mechanics of Continua, 1951 | MR