Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a6, author = {N. A. Kudryashov and D. I. Sinelshchikov}, title = {Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {309--316}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a6/} }
TY - JOUR AU - N. A. Kudryashov AU - D. I. Sinelshchikov TI - Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 309 EP - 316 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a6/ LA - ru ID - MAIS_2016_23_3_a6 ER -
%0 Journal Article %A N. A. Kudryashov %A D. I. Sinelshchikov %T Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 309-316 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a6/ %G ru %F MAIS_2016_23_3_a6
N. A. Kudryashov; D. I. Sinelshchikov. Analytical solutions of a nonlinear convection-diffusion equation with polynomial sources. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 309-316. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a6/
[1] J. D. Murray, Mathematical Biology, v. I, An Introduction, Springer-Verlag, Berlin, 2001, 556 pp. | MR
[2] N.A. Kudryashov, A.S. Zakharchenko, “A note on solutions of the generalized Fisher equation”, Appl. Math. Lett., 32 (2014), 43–56 | DOI | MR
[3] A.D. Polyanin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, Chapman and Hall/CRC, Boca Raton–London–New York, 2011, 112 pp. | MR
[4] M. Sabatini, “On the period function of $x^{''}+f(x)x^{'2}+g(x)=0$”, J. Differ. Equ., 196 (2004), 151–168 | DOI | MR | Zbl
[5] V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, “On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations”, Proc. R. Soc. A Math. Phys. Eng. Sci., 461 (2005), 2451–2476 | DOI | MR | Zbl
[6] A.K. Tiwari, S.N. Pandey, M. Senthilvelan, M. Lakshmanan, “Classification of Lie point symmetries for quadratic Lienard type equation $\ddot{x}+f(x)\dot{x}^{2}+g(x)=0$”, J. Math. Phys., 54 (2013), 053506 | DOI | MR | Zbl
[7] N.A. Kudryashov, D.I. Sinelshchikov, “On the criteria for integrability of the Lienard equation”, Appl. Math. Lett., 57 (2016), 114–120 | DOI | MR | Zbl
[8] N.A. Kudryashov, D.I. Sinelshchikov, “On the connection of the quadratic Lienard equation with an equation for the elliptic functions”, Regul. Chaotic Dyn., 20 (2015), 486–496 | DOI | MR | Zbl
[9] N.A. Kudryashov, D.I. Sinelshchikov, “Analytical solutions for problems of bubble dynamics”, Phys. Lett. A, 379 (2015), 798–802 | DOI | MR
[10] N.A. Kudryashov, D.I. Sinelshchikov, “Analytical solutions of the Rayleigh equation for empty and gas-filled bubble”, J. Phys. A Math. Theor., 47 (2014), 405202 | DOI | MR | Zbl
[11] W. Nakpim, S.V. Meleshko, “Linearization of Second-Order Ordinary Differential Equations by Generalized Sundman Transformations”, Symmetry, Integr. Geom. Methods Appl., 6 (2010), 051, 11 pp. | MR
[12] S. Moyo, S.V. Meleshko, “Application of the generalised Sundman transformation to the linearisation of two second-order ordinary differential equations”, J. Nonlinear Math. Phys., 12 (2011), 213–236 | DOI | MR
[13] E.L. Ince, Ordinary differential equations, Dover, New York, 1956, 558 pp. | MR
[14] E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Mineola, 1997, 484 pp. | MR | Zbl
[15] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927, 620 pp. | MR | Zbl