Numerical simulation of adiabatic shear bands formation in composites
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 298-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of plastic flow localization under shear deformations of a composite material consisting from welded steel and copper is studied. A mathematical model describing this physical process is proposed. A new numerical approach based on Courant–Isaacson–Rees scheme is suggested. This algorithm was verified using three benchmark problems. Operability and effectiveness of this algorithm is confirmed. A numerical simulation of plastic flow localization in composite materials is performed. The influence on localization process of boundary conditions, of initial strain rate and materials width is studied. It is shown that at the initial stage the shear velocity of material layers oscillates. Theoretical estimates of frequency and oscillation period is given. Computational results coincide with these estimates. It is found that plastic flow localizes in the copper part of the composite. One or two areas of plastic flow localization appears depending on the width of steel and copper parts, as well as on the initial plastic strain rate and the selected type of a boundary conditions. The areas locate on characteristic distance from borders. The dependence of this distance and initial strain rate is shown and the corresponding estimates are obtained for two types of boundary conditions. When two areas of localization are formed, in one of them the temperature and the deformation increas faster than in another one.
Keywords: shear band, deformation localization, plastic deformation, numerical simulation.
@article{MAIS_2016_23_3_a5,
     author = {N. A. Kudryashov and R. V. Muratov and P. N. Ryabov},
     title = {Numerical simulation of adiabatic shear bands formation in composites},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {298--308},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a5/}
}
TY  - JOUR
AU  - N. A. Kudryashov
AU  - R. V. Muratov
AU  - P. N. Ryabov
TI  - Numerical simulation of adiabatic shear bands formation in composites
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 298
EP  - 308
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a5/
LA  - ru
ID  - MAIS_2016_23_3_a5
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%A R. V. Muratov
%A P. N. Ryabov
%T Numerical simulation of adiabatic shear bands formation in composites
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 298-308
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a5/
%G ru
%F MAIS_2016_23_3_a5
N. A. Kudryashov; R. V. Muratov; P. N. Ryabov. Numerical simulation of adiabatic shear bands formation in composites. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 298-308. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a5/

[1] Schneider J., Nunes J. A., “Characterization of plastic flow and resulting microtextures in a friction stir weld”, Metall. Mater. Trans. B, 35 (2004), 777–783 | DOI

[2] Seidel T., Reynolds A., “Visualization of the material flow in aa2195 friction stir welds using a marker insert technique”, Metall. Mater. Trans., 32A (2001), 2879–2884 | DOI

[3] Moss G., “Shear strains, strain rates, temperature changes in adiabatic shear bands”, Waves and High Strain Rate Phenomena in Metals, eds. Meyers L., MurrShock L., 1981

[4] Rogers H. C., “Adiabatic plastic deformation”, Annu. Rev. Mater. Sci., 9 (1979), 283 | DOI

[5] Bai Y., Dodd B., Adiabatic Shear Localization, Pergamon press, Oxford, 1992

[6] Lee W. S., Liu C. Y., Chen T. C., “Adiabatic shearing bends havior of different steels under extreme high shear loading”, Journal of Nuclear Materials, 374 (2008), 313–319 | DOI

[7] Gupta G., Was G. S., Alexandreanu B., “Grain boundary engineering of ferritiction martensitic alloy T91”, Metallurgical and Materials Transaction A, 35 (2004), 717–719 | DOI

[8] Rittel D., “Adiabatic shear failure of a syntactic polymeric foam”, Materials Letter, 59 (2005), 723–732 | DOI

[9] Shockey D. A. et.al., “Shear failure of inconel 718 under dynamic loads”, Experimental Mechanics, 47 (2007), 723–732 | DOI

[10] Wright T. W., The phisics and mathematics of adiabatic shear bands, Cambridge University Press, 2002 | MR

[11] Marchand A., Duffy J., “An experimental study of the formation process of adiabatic shear bands in a structural steel”, J. Mech. Phys. Solids, 36 (1988), 251–283 | DOI

[12] Kolsky H., “An investigation of the mechanical properties of materials at very. High rates of loading”, Proc. Phys. Soc., 62-B (1949), 676 | DOI

[13] Nesterenko V. F., Bondar M. P., “Investigation of Deformation Localization by the ‘Thick-Walled Cylinder’ Method”, DYMAT journal, 1 (1994), 245–251

[14] Zhou F., Wright T. W., Ramesh K. T., “A numerical methodology for invesigating the formation of adiabatic shear bands”, Journal of the Mechanics and Physics of Solids, 54 (2006), 904–926 | DOI | Zbl

[15] Zhou F., Wright T. W., Ramesh K. T., “The formation of multiple adiabatic shear bands”, Journal of the Mechanics and Physics of Solids, 54 (2006), 1376–1400 | DOI | Zbl

[16] Batra R. C., Wei Z. G., “Shear bands due to heat flux prescribed at boundaries”, Int. J. Plast., 22 (2006), 1–15 | DOI | Zbl

[17] Kudryashov N. A., Ryabov P. N., Zakharchenko A. S., “Self-organization of adiabatic shear bands in OFHC copper and HY-100 steel”, Journal of the Mechanics and Physics of Solids, 76 (2015), 180–192 | DOI | MR

[18] Walter J. W., “Numerical experiments on adiabatic shear band formation in one dimension”, International Journal of Plasticity, 8 (1992), 657–693 | DOI

[19] Rozhdestvenskij B. L., Yanenko N. N., Sistemy kvazilinejnyx uravnenij i ih prilozheniya k gazovoj dinamike, Nauka, M., 1978 (in Russian)

[20] Koshkin V. I., Kudryashov N. A., Ryabov P. N., “Chislennoe molelirovanie obrazovaniya polos adiabaticheskogo sdviga pri deformatsiyah”, Yadernaya fizika i inzeniring, 1 (2010), 465–474 (in Russian) | Zbl