Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a15, author = {A. I. Zadorin}, title = {Interpolation formulas for functions with large gradients in the boundary layer and their application}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {377--384}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a15/} }
TY - JOUR AU - A. I. Zadorin TI - Interpolation formulas for functions with large gradients in the boundary layer and their application JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 377 EP - 384 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a15/ LA - en ID - MAIS_2016_23_3_a15 ER -
%0 Journal Article %A A. I. Zadorin %T Interpolation formulas for functions with large gradients in the boundary layer and their application %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 377-384 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a15/ %G en %F MAIS_2016_23_3_a15
A. I. Zadorin. Interpolation formulas for functions with large gradients in the boundary layer and their application. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 377-384. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a15/
[1] Zadorin A. I., “Method of interpolation for a boundary layer problem”, Suberian journal of numerical mathematics, 10:3 (2007), 267–275 (in Russian)
[2] Shishkin G. I., Discrete Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Russian Academy of Sciences, Ural Branch, Ekaterinburg, 1992 (in Russian)
[3] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, Revised Edition, World Scientific, Singapore, 2012 | MR | Zbl
[4] Zadorin A. I., Zadorin N. A., “Interpolation formula for functions with a boundary layer component and its application to derivatives calculation”, Siberian Electronic Mathematical Reports, 9 (2012), 445–455 | MR | Zbl
[5] Bakhvalov N. S., Zhidkov N. P., Kobel'kov G. M., Numerical Methods, Nauka, M., 1987 (in Russian) | MR | Zbl
[6] Zadorin A. I., Zadorin N. A., “Spline interpolation on a uniform grid for functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 50:2 (2010), 211–223 | DOI | MR | Zbl
[7] Zadorin A. I., Zadorin N. A., “Quadrature formulas for functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 51:11 (2011), 1837–1846 | DOI | MR | Zbl
[8] Zadorin A. I., Zadorin N. A., “An analogue of the four-point Newton-Cotes formula for a function with a boundary-Layer Component”, Numerical Analysis and Applications, 6:4 (2013), 268–278 | DOI | MR | Zbl
[9] Zadorin A., Zadorin N., “Quadrature formula with five nodes for functions with a boundary layer component”, Lect. Notes in Comput. Sci., 8236, Springer, Berlin, 2013, 540–546 | DOI | MR | Zbl
[10] Zadorin A. I., Zadorin N. A., “Analogue of Newton-Cotes formulas for numerical integration of functions with a boundary-layer component”, Computational Mathematics and Mathematical Physics, 56:3 (2016), 358–366 | DOI | Zbl