Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 248-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a singularly perturbed parabolic problem with Dirichlet conditions we prove the existence of a solution periodic in time and with boundary layers at both ends of the space interval in the case that the degenerate equation has a double root. We construct the corresponding asymptotic expansion in a small parameter. It turns out that the algorithm of the construction of the boundary layer functions and the behavior of the solution in the boundary layers essentially differ from that ones in case of a simple root. We also investigate the stability of this solution and the corresponding region of attraction.
Keywords: singularly perturbed reaction-diffusion equation; asymptotic approximation; periodic solution; boundary layers; Lyapunov stability; region of attraction.
@article{MAIS_2016_23_3_a1,
     author = {V. F. Butuzov and N. N. Nefedov and L. Recke and K. Schneider},
     title = {Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {248--258},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - N. N. Nefedov
AU  - L. Recke
AU  - K. Schneider
TI  - Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 248
EP  - 258
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/
LA  - ru
ID  - MAIS_2016_23_3_a1
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A N. N. Nefedov
%A L. Recke
%A K. Schneider
%T Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 248-258
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/
%G ru
%F MAIS_2016_23_3_a1
V. F. Butuzov; N. N. Nefedov; L. Recke; K. Schneider. Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 248-258. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/

[1] A. B. Vasil'eva, V. F. Butuzov, Asymptotic methods in the theory of singular perturbations, Vyss. Shkola, M., 1990 (in Russian) | MR | Zbl

[2] A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov, “Contrast structures in singularly perturbed problems”, Fundamentalnaja i prikladnaja matematika, 4 (1998), 799–851 (in Russian) | MR | Zbl

[3] V. F. Butuzov, “On the periodic solutions of singularly perturbed parabolic problems in case of multiple roots of the degenerate equation”, Zh. Vych. Math. Math. Phys., 51 (2011), 44–55 (in Russian) | MR | Zbl

[4] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “On a singularly perturbed initial value problem in the case of a double root of the degenerate equation”, Nonlinear Analysis, 2012, 1–11 | MR

[5] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and stability of solutions with periodically moving weak internal layers”, J. Math. Anal. Appl., 348 (2008), 508–517 | DOI | MR

[6] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Region of attraction of a periodic solution to a singularly perturbed parabolic problem”, J. Math. Anal. Appl., 91 (2012), 1265–1277 | MR | Zbl

[7] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Periodic solutions with a boundary layer of reaction-diffusion equations with singularly perturbed Neumann boundary conditions”, Int. J. Bif. Chaos, 24 (2014) | DOI | MR | Zbl

[8] P. Hess, “Periodic-parabolic boundary value problems and positivity”, Pitman Research Notes in Math. Series, 1991, 247 | MR

[9] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York–London, 2004 | MR