Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2016_23_3_a1, author = {V. F. Butuzov and N. N. Nefedov and L. Recke and K. Schneider}, title = {Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {248--258}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/} }
TY - JOUR AU - V. F. Butuzov AU - N. N. Nefedov AU - L. Recke AU - K. Schneider TI - Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation JO - Modelirovanie i analiz informacionnyh sistem PY - 2016 SP - 248 EP - 258 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/ LA - ru ID - MAIS_2016_23_3_a1 ER -
%0 Journal Article %A V. F. Butuzov %A N. N. Nefedov %A L. Recke %A K. Schneider %T Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation %J Modelirovanie i analiz informacionnyh sistem %D 2016 %P 248-258 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/ %G ru %F MAIS_2016_23_3_a1
V. F. Butuzov; N. N. Nefedov; L. Recke; K. Schneider. Asymptotics, stability and region of attraction of a periodic solution to a singularly perturbed parabolic problem in case of a multiple root of the degenerate equation. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 3, pp. 248-258. http://geodesic.mathdoc.fr/item/MAIS_2016_23_3_a1/
[1] A. B. Vasil'eva, V. F. Butuzov, Asymptotic methods in the theory of singular perturbations, Vyss. Shkola, M., 1990 (in Russian) | MR | Zbl
[2] A. B. Vasil'eva, V. F. Butuzov, N. N. Nefedov, “Contrast structures in singularly perturbed problems”, Fundamentalnaja i prikladnaja matematika, 4 (1998), 799–851 (in Russian) | MR | Zbl
[3] V. F. Butuzov, “On the periodic solutions of singularly perturbed parabolic problems in case of multiple roots of the degenerate equation”, Zh. Vych. Math. Math. Phys., 51 (2011), 44–55 (in Russian) | MR | Zbl
[4] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “On a singularly perturbed initial value problem in the case of a double root of the degenerate equation”, Nonlinear Analysis, 2012, 1–11 | MR
[5] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and stability of solutions with periodically moving weak internal layers”, J. Math. Anal. Appl., 348 (2008), 508–517 | DOI | MR
[6] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Region of attraction of a periodic solution to a singularly perturbed parabolic problem”, J. Math. Anal. Appl., 91 (2012), 1265–1277 | MR | Zbl
[7] V. F. Butuzov, N. N. Nefedov, L. Recke, K. R. Schneider, “Periodic solutions with a boundary layer of reaction-diffusion equations with singularly perturbed Neumann boundary conditions”, Int. J. Bif. Chaos, 24 (2014) | DOI | MR | Zbl
[8] P. Hess, “Periodic-parabolic boundary value problems and positivity”, Pitman Research Notes in Math. Series, 1991, 247 | MR
[9] C. V. Pao, Nonlinear parabolic and elliptic equations, Plenum Press, New York–London, 2004 | MR