Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 61-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a second order equation with a small factor at the highest derivative the asymptotic behavior of all eigenvalues of periodic and antiperiodic problems is studied. The main assumption is that the coefficient at the first derivative in the equation is the sign of the variable so that turning points exist an algorithm for computing all coefficients of asymptotic series for every considered eigenvalue is developed. It turns out that the values of these coefficients are defined by coefficient values of the original equation only in a neighborhood of turning points. Asymptotics for the length of Lyapunov zones of stability and instability was obtained. In particular, the problem of stability of solutions of second order equations with periodic coefficients and small parameter at the highest derivative was solved.
Keywords: singularly perturbed equation, turning points, asymptotic, boundary value problem, eigenvalues.
@article{MAIS_2016_23_1_a4,
     author = {S. A. Kashchenko},
     title = {Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {61--85},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a4/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 61
EP  - 85
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a4/
LA  - ru
ID  - MAIS_2016_23_1_a4
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 61-85
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a4/
%G ru
%F MAIS_2016_23_1_a4
S. A. Kashchenko. Asymptotic expansions of eigenvalues of periodic and antiperiodic boundary problems for singularly perturbed second order differential equation with turning points. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 61-85. http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a4/

[1] Coddington E., Levinson N., Theory of ordinary differential equations, McGraw-Hill Book Company, London, 1955 | MR | Zbl

[2] Yakubovich V. A., Starzhinskiy V. M., Lineynye differentsial'nye uravneniya s periodicheskimi koeffitsientami, Nauka, M., 1972 (in Russian) | MR

[3] Kashchenko S. A., Ustoychivost uravneniy vtorogo poryadka s periodicheskimi koeffitsientami, Yaroslavl, 2006 (in Russian)

[4] Kashchenko S. A., “Asymptotics of Eigenvalues of First Boundary Value Problem for Singularly Pertubed Second-order Differential Equation with Turning Points”, Modeling and Analysis of Information Systems, 22:5 (2015), 682–710 (in Russian)

[5] Kashchenko S. A., “Asymptotics of Eigenvalues of First Boundary Value Problem for Singularly Pertubed Second-order Differential Equation with Turning Points”, Modeling and Analysis of Information Systems, 23:1 (2016), 41–60 (in Russian)

[6] Kashchenko S. A., Kolesov Y. S., “Kriteriy ustoychivosti resheniy singulyarno vozmushchennykh uravneniy vtorogo poryadka s periodicheskimi koeffitsiyentami”, UMN, XXIX:4 178 (1974), 171–172 (in Russian)

[7] Kolesov Y. S., “Periodicheskiye resheniya kvazilineynykh parabolicheskikh uravneniy vtorogo poryadka”, Tr. Mosk. mat. obshch., 21, 1970, 103–134 (in Russian) | MR | Zbl

[8] Naymark M. A., Lineynyye differentsial'nyye operatory, Nauka, M., 1969 (in Russian) | MR

[9] Chaplygin V. F., “Polozhitel'nyye periodicheskiye resheniya singulyarno vozmushchennykh nelineynykh differentsial'nykh uravneniy vtorogo poryadka”, Tr. nauchno-issled. in-ta matematiki VGU, 2 (1970), 43–46 (in Russian)