Asymptotic expansions of eigenvalues of the first boundary problem for singularly perturbed second order differential equation with turning points
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 41-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

For singularly perturbed second order equations the dependence of eigenvalues of the first boundary problem on a small parameter at the highest derivative is studied. The main assumption is that the coefficient at the first derivative in the equation is the sign of the variable. This leads to the emerging of so-called turning points. Asymptotic expansions on the small parameter are obtained for all eigenvalues of the considered boundary problem. It turns out that the expansions are defined by the behavior of coefficients in a neighborhood of turning points only.
Keywords: singularly perturbed equation, turning points, asymptotic, boundary value problem, eigenvalues.
@article{MAIS_2016_23_1_a3,
     author = {S. A. Kashchenko},
     title = {Asymptotic expansions of eigenvalues of the first boundary problem for singularly perturbed second order differential equation with turning points},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {41--60},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a3/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Asymptotic expansions of eigenvalues of the first boundary problem for singularly perturbed second order differential equation with turning points
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 41
EP  - 60
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a3/
LA  - ru
ID  - MAIS_2016_23_1_a3
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Asymptotic expansions of eigenvalues of the first boundary problem for singularly perturbed second order differential equation with turning points
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 41-60
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a3/
%G ru
%F MAIS_2016_23_1_a3
S. A. Kashchenko. Asymptotic expansions of eigenvalues of the first boundary problem for singularly perturbed second order differential equation with turning points. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 41-60. http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a3/

[1] Kashchenko S. A., Ustoychivost uravneniy vtorogo poryadka s periodicheskimi koeffitsientami, Yaroslavl, 2006 (in Russian)

[2] Vasil'eva A. B., Butuzov V. F., Asimptoticheskie razlozheniya resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973 (in Russian) | MR

[3] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van-der-Polya”, PMM, 11 (1947), 313–328 (in Russian) | Zbl

[4] Cole J., Perturbation methods in applied mathematics, Blaisdell Publishing Company, London, 1968 | MR | Zbl

[5] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyy sloy dlya lineynykh differentsialnykh uravneniy s malym parametrom”, UMN, 12:5 (1957), 3–122 (in Russian) | MR | Zbl

[6] Kolesov Yu. S., Chaplygin V. F., “O neostsillyatsii resheniy singulyarno vozmushchennykh uravneniy vtorogo poryadka”, DAN SSSR, 199:6 (1971), 1240–1242 (in Russian) | MR

[7] Ch. J. de la Vallie-Poussin, “Sur l'equation differentielle lineaire du second ordre. Determination d'une integrale par deux valeurs assignees. Extension aux equations d'ordre $n$”, J. Math. Pure et Appl., 8:1 (1929), 125–144

[8] Kashchenko S. A., “Predelnye znacheniya sobstvennykh chisel pervoy kraevoy zadachi dlya singulyarno vozmushchennogo differentsialnogo uravneniya vtorogo poryadka s tochkami povorota”, Vest. Yarosl. un-ta, 10, Yaroslavl, 1974, 3–39 (in Russian)

[9] Kashchenko S. A., “Asimptotika sobstvennykh znacheniy periodicheskoy i neperiodicheskoy krayevykh zadach dlya singulyarno vozmushchennykh differentsialnykh uravneniy vtorogo poryadka s tochkami povorota”, Vest. Yarosl. un-ta, 13, Yaroslavl, 1975, 20–83 (in Russian)

[10] Kashchenko S. A., “Asymptotics of Eigenvalues of First Boundary Value Problem for Singularly Pertubed Second-order Differential Equation with Turning Points”, Modeling and Analysis of Information Systems, 22:5 (2015), 682–710 (in Russian)