Solution continuation on a discontinuity set
Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 12-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The movement of an object characterized by ordinary differential equations (ODE) with discontinuous right-hand sides along the surface of a gap is called a sliding mode. It is required to find the connection of the right-slip characteristics of the system (the system to continue the solution on the surface of the gap). The article prompted a sequel based on the solution of the averaged optimization. It is shown that for the known examples of methods for solving optimization averaged lead to results coinciding with the method of A. F. Filippov and allow to extend these techniques to a wide class of multidimensional problems. Optimality conditions set forth averaged nonlinear programming and examples of their use in the case of ordinary and degenerate solutions.
Keywords: differential equations with discontinuous velocity, sliding modes, averaged optimization.
@article{MAIS_2016_23_1_a1,
     author = {A. M. Tsirlin},
     title = {Solution continuation on a discontinuity set},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {12--22},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a1/}
}
TY  - JOUR
AU  - A. M. Tsirlin
TI  - Solution continuation on a discontinuity set
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2016
SP  - 12
EP  - 22
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a1/
LA  - ru
ID  - MAIS_2016_23_1_a1
ER  - 
%0 Journal Article
%A A. M. Tsirlin
%T Solution continuation on a discontinuity set
%J Modelirovanie i analiz informacionnyh sistem
%D 2016
%P 12-22
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a1/
%G ru
%F MAIS_2016_23_1_a1
A. M. Tsirlin. Solution continuation on a discontinuity set. Modelirovanie i analiz informacionnyh sistem, Tome 23 (2016) no. 1, pp. 12-22. http://geodesic.mathdoc.fr/item/MAIS_2016_23_1_a1/

[1] di Bernardo M., Kowalczyk P., Nordmark A., “Sliding bifurcations: a novel mechanism for the sudden onset 0f of chaos in dry friction oscillators”, Int. J. Bif. Chaos, 2003, no. 10, 2935–2948 | DOI | MR | Zbl

[2] Edwards C., Spurgeon S. K., Sliding Mode Control, Teylor and Francis, 1998

[3] Haek O., “Discontinuous differential equations”, J. Differential Equations, 1979, no. 2, 149–170 | DOI

[4] Jefrrey M. R., “Dynamics at a switcing intersection hierarchy, isonomy, and multiple-sliding”, Physica D, 2014, no. 1, 34–45 | DOI

[5] Jefrrey M. R., “Dynamimics at a switching intersection: hierarchy, isonomy, and multiple–sliding”, SIADS, 2014, no. 3, 1082–1105 | DOI | MR

[6] Piltz S. H., Porter M. A., Maini P. K., “Prey switching with a linear preference trade-off”, SIAM J. Appl. Math., 2014, no. 2, 658–682 | MR | Zbl

[7] Sotomayor J., Teixeira M. A., “Regularization of diskontinuos vector fields”, Proceedings of the International Conference on Differential Equations (Lisboa, 1996), 207–223 | MR | Zbl

[8] Teixeira M. A., da Silva P. R., “Regularization and singular perturbation techniques for non-smooth systems”, Physica D, 2012, no. 22, 1948–1955 | DOI | MR

[9] Kuznetsiv Yu. A., Rinaldi S., Gragani A., “One-parametr bifurcations in planar Filippov systems”, Int. J. Bif. Chaos, 2003, no. 13, 2157–2188 | DOI | MR

[10] Varius A., “Special issue on dynamics and bifurcations of nonsmooth systems”, Physica, 2012, no. 22, 1825–2082

[11] Utkin V. I., “Brief Comments for the Continuation Method by A. F. Filippov for Solution Continuation on a Discontinuity Set”, Autom. Remote Control, 2015, no. 5, 933–942 | MR | Zbl

[12] Filippov A. F., “Differentsialnye uravneniya s razryvnoy pravoy chastyu”, Mat. sbornik, 1960, 99–128 (in Russian) | Zbl

[13] Filippov A. F., Differential Equations with Discontinuous Righhand Sides, Kluwer Academic Publ., Dortrecht, 1988 ; 1985 (in Russian) | MR

[14] Utkin V. I., Skolzyashchie rezhimy v zadachakh optimizatsii i upravleniya, Nauka, M., 1981 (in Russian) | MR

[15] Utkin V. I., “Variable structure systems with sliding modes”, IEEE Tras. Automat. Contr., 1977, no. 22 | MR

[16] Utkin V. I., Sliding modes in control and optimization, Springer-Verlag, 1992 | MR | Zbl

[17] Neymark J. I., “O skolzjashem regime releynix sistem avtomatisheskogo regulirovanija”, Avtomatika i telemekhanika, 1957, no. 1 (in Russian)

[18] Zipkin J. Z., Teorija sistem avtomatisheskogo regulirovanija, Gostexizdat, M., 1955 (in Russian)

[19] Tsirlin A. M., Metody usrednennoy optimizatsii i ikh prilozheniya, Fizmatlit, M., 1977 (in Russian) | MR

[20] Rozonoer L. I., Tsirlin A. M., “Optimal control of thermodynamic systems”, Autom. Remote Control, 1983, no. 1–3