Formal diagonalisation of Lax--Darboux schemes
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 6, pp. 795-817.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the concept of Lax–Darboux scheme and illustrate it on well known examples associated with the Nonlinear Schrödinger (NLS) equation. We explore the Darboux links of the NLS hierarchy with the hierarchy of Heisenberg model, principal chiral field model as well as with differential-difference integrable systems (including the Toda lattice and differential-difference Heisenberg chain) and integrable partial difference systems. We show that there exists a transformation which formally diagonalises all elements of the Lax–Darboux scheme simultaneously. It provides us with generating functions of local conservation laws for all integrable systems obtained. We discuss the relations between conservation laws for systems belonging to the Lax–Darboux scheme.
Keywords: Lax-Darboux schemes, nonlinear Schrödinger equation
Mots-clés : formal diagonalisation, NLS.
@article{MAIS_2015_22_6_a5,
     author = {A. V. Mikhailov},
     title = {Formal diagonalisation of {Lax--Darboux} schemes},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {795--817},
     publisher = {mathdoc},
     volume = {22},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_6_a5/}
}
TY  - JOUR
AU  - A. V. Mikhailov
TI  - Formal diagonalisation of Lax--Darboux schemes
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 795
EP  - 817
VL  - 22
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_6_a5/
LA  - en
ID  - MAIS_2015_22_6_a5
ER  - 
%0 Journal Article
%A A. V. Mikhailov
%T Formal diagonalisation of Lax--Darboux schemes
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 795-817
%V 22
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_6_a5/
%G en
%F MAIS_2015_22_6_a5
A. V. Mikhailov. Formal diagonalisation of Lax--Darboux schemes. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 6, pp. 795-817. http://geodesic.mathdoc.fr/item/MAIS_2015_22_6_a5/

[1] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 4, Springer-Verlag, Berlin, 1991 | DOI | MR

[2] C. Rogers, W. K. Schief, Bäcklund and {D}arboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | MR | Zbl

[3] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices, 11, 573–611 | MR | Zbl

[4] F. Khanizadeh, A. V. Mikhailov, Jing Ping Wang, “Darboux transformations and recursion operators for differential-difference equations”, Theoretical and Mathematical Physics, 177:3 (2013), 1606–1654 | DOI | MR | Zbl

[5] A. V. Mikhailov, G. Papamikos, Jing Ping Wang, “Darboux transformation with dihedral reduction group”, Journal of Mathematical Physics, 55:11 (2014), 113507, arXiv: 1402.5660 | DOI | MR | Zbl

[6] W. R. Wasow, Asymptotic expansions of solutions of ordinary differential equations, Pure and applied mathematics, Wiley Interscience Publishes, New York, 1965

[7] V. G. Drinfel'd, V. V. Sokolov, “Lie algebras and equations of {K}orteweg-de {V}ries type”, Current problems in mathematics, Itogi Nauki i Tekhniki, 24, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., M., 1984, 81–180 | MR

[8] A. V. Mikhailov, A. B. Shabat, “Conditions for integrability of systems of two equations of the form $u\sb t={A}(u)u\sb {xx}+{F}(u,u\sb x)$, I”, Teoret. Mat. Fiz., 62:2 (1985), 163–185 | DOI | MR | Zbl

[9] A. V. Mikhailov, “Formal diagonalisation of {D}arboux transformation and conservation laws of integrable {PDE}s, {PD$\Delta$E}s and {P$\Delta$E}s”, International Workshop “Geometric Structures in Integrable Systems” (October 30 November 02, 2012, M.V. Lomonosov Moscow State University, Moscow) http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934

[10] A. V. Mikhailov, “Formal diagonalisation of the Lax–Darboux scheme and conservation laws of integrable partial differential, differential-difference and partial difference”, DIS A follow-up meeting (8–12 July 2013, Isaac Newton Institute for Mathematical Sciences) http://www.newton.ac.uk/programmes/DIS/seminars/2013071114001.html

[11] I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete lax operator and conservation laws and symmetries of dynamical systems”, Theoretical and Mathematical Physics, 177:3 (2013), 1655–1679 | DOI | MR | Zbl

[12] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theoretical and Mathematical Physics, 180:1 (2014), 765–780 | DOI | MR | Zbl

[13] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Ž. Èksper. Teoret. Fiz., 61:1 (1971), 118–134 | MR

[14] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl

[15] A. V. Mikhailov (ed.), Integrability, Lecture Notes in Physics, 767, Springer, 2009 | DOI | MR

[16] V. E. Adler, Classification of discrete integrable equations, DSci Thesis, L. D. Landau Institute, 2010

[17] I. Merola, O. Ragnisco, Gui-Zhang Tu, “A novel hierarchy of integrable lattices”, Inverse Problems, 10:6 (1994), 1315–1334 | DOI | MR | Zbl

[18] L. A. Takhtadzhyan, V. E. Zakharov, “Equivalence of the nonlinear {S}chrödinger equation and the equation of a {H}eisenberg ferromagnet”, Theoretical and Mathematical Physics, 38:1 (1979), 26–35 | MR

[19] V. E. Zakharov, A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Zh. Èksper. Teoret. Fiz., 74:6 (1978), 1953–1973 | MR

[20] A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Uspekhi Mat. Nauk, 56:1(337) (2001), 63–106 | DOI | MR | Zbl