Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_6_a5, author = {A. V. Mikhailov}, title = {Formal diagonalisation of {Lax--Darboux} schemes}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {795--817}, publisher = {mathdoc}, volume = {22}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_6_a5/} }
A. V. Mikhailov. Formal diagonalisation of Lax--Darboux schemes. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 6, pp. 795-817. http://geodesic.mathdoc.fr/item/MAIS_2015_22_6_a5/
[1] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 4, Springer-Verlag, Berlin, 1991 | DOI | MR
[2] C. Rogers, W. K. Schief, Bäcklund and {D}arboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[3] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Int. Math. Res. Notices, 11, 573–611 | MR | Zbl
[4] F. Khanizadeh, A. V. Mikhailov, Jing Ping Wang, “Darboux transformations and recursion operators for differential-difference equations”, Theoretical and Mathematical Physics, 177:3 (2013), 1606–1654 | DOI | MR | Zbl
[5] A. V. Mikhailov, G. Papamikos, Jing Ping Wang, “Darboux transformation with dihedral reduction group”, Journal of Mathematical Physics, 55:11 (2014), 113507, arXiv: 1402.5660 | DOI | MR | Zbl
[6] W. R. Wasow, Asymptotic expansions of solutions of ordinary differential equations, Pure and applied mathematics, Wiley Interscience Publishes, New York, 1965
[7] V. G. Drinfel'd, V. V. Sokolov, “Lie algebras and equations of {K}orteweg-de {V}ries type”, Current problems in mathematics, Itogi Nauki i Tekhniki, 24, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., M., 1984, 81–180 | MR
[8] A. V. Mikhailov, A. B. Shabat, “Conditions for integrability of systems of two equations of the form $u\sb t={A}(u)u\sb {xx}+{F}(u,u\sb x)$, I”, Teoret. Mat. Fiz., 62:2 (1985), 163–185 | DOI | MR | Zbl
[9] A. V. Mikhailov, “Formal diagonalisation of {D}arboux transformation and conservation laws of integrable {PDE}s, {PD$\Delta$E}s and {P$\Delta$E}s”, International Workshop “Geometric Structures in Integrable Systems” (October 30 November 02, 2012, M.V. Lomonosov Moscow State University, Moscow) http://www.mathnet.ru/php/presentation.phtml?option_lang=eng&presentid=5934
[10] A. V. Mikhailov, “Formal diagonalisation of the Lax–Darboux scheme and conservation laws of integrable partial differential, differential-difference and partial difference”, DIS A follow-up meeting (8–12 July 2013, Isaac Newton Institute for Mathematical Sciences) http://www.newton.ac.uk/programmes/DIS/seminars/2013071114001.html
[11] I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete lax operator and conservation laws and symmetries of dynamical systems”, Theoretical and Mathematical Physics, 177:3 (2013), 1655–1679 | DOI | MR | Zbl
[12] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Discrete equation on a square lattice with a nonstandard structure of generalized symmetries”, Theoretical and Mathematical Physics, 180:1 (2014), 765–780 | DOI | MR | Zbl
[13] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Ž. Èksper. Teoret. Fiz., 61:1 (1971), 118–134 | MR
[14] A. V. Mikhailov, A. B. Shabat, V. V. Sokolov, “The symmetry approach to classification of integrable equations”, What is integrability?, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1991, 115–184 | DOI | MR | Zbl
[15] A. V. Mikhailov (ed.), Integrability, Lecture Notes in Physics, 767, Springer, 2009 | DOI | MR
[16] V. E. Adler, Classification of discrete integrable equations, DSci Thesis, L. D. Landau Institute, 2010
[17] I. Merola, O. Ragnisco, Gui-Zhang Tu, “A novel hierarchy of integrable lattices”, Inverse Problems, 10:6 (1994), 1315–1334 | DOI | MR | Zbl
[18] L. A. Takhtadzhyan, V. E. Zakharov, “Equivalence of the nonlinear {S}chrödinger equation and the equation of a {H}eisenberg ferromagnet”, Theoretical and Mathematical Physics, 38:1 (1979), 26–35 | MR
[19] V. E. Zakharov, A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method”, Zh. Èksper. Teoret. Fiz., 74:6 (1978), 1953–1973 | MR
[20] A. V. Zhiber, V. V. Sokolov, “Exactly integrable hyperbolic equations of Liouville type”, Uspekhi Mat. Nauk, 56:1(337) (2001), 63–106 | DOI | MR | Zbl