Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_3_a6, author = {A. A. Kashchenko}, title = {Stability of {CW} solutions of semiconductor laser with large delay}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {420--438}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/} }
TY - JOUR AU - A. A. Kashchenko TI - Stability of CW solutions of semiconductor laser with large delay JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 420 EP - 438 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/ LA - ru ID - MAIS_2015_22_3_a6 ER -
A. A. Kashchenko. Stability of CW solutions of semiconductor laser with large delay. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 420-438. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/
[1] Kashchenko A. A., “Stability of the Simplest Periodic Solutions in the Stuart-Landau Equation with Large Delay”, Automatic Control and Computer Sciences, 47:7 (2013), 566–570
[2] Kashchenko A. A., “Ustoychivost nepreryvnykh voln dlya modeli FDML lazera”, Modelirovanie i analiz informatsionnykh sistem, 21:3 (2014), 35–54 (in Russian)
[3] Kashchenko A., “Stability of continuous wave solutions of one laser model with large delay”, Regular and Chaotic Dynamics, 20:2 (2015), 173–183 | MR | Zbl
[4] Reddy D. V. R., Sen A., Johnston G. L., “Time delay effects on coupled limit cycle oscillators at Hopf bifurcation”, Physica D, 129 (1999), 15–34 | MR | Zbl
[5] Reddy D. V. R., Sen A., Johnston G. L., “Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks”, Physica D, 144 (2000), 335–357 | MR | Zbl
[6] Slepneva S., Kelleher B., O'Shaughnessy B., Hegarty S. P., Vladimirov A. G., Huyet G., “Dynamics of Fourier domain mode-locked lasers”, Opt. Express, 21 (2013), 19240–19251
[7] Vladimirov A. G., Turaev D., “Model for passive mode-locking in semiconductor lasers”, Phys. Rev. A, 72 (2005), 033808
[8] Vladimirov A., Turaev D., Kozyreff G., “Delay differential equations for mode-locked semiconductor lasers”, Opt. Lett., 29 (2004), 1221–1223
[9] Vladimirov A., Turaev D., “A new model for a mode-locked semiconductor laser”, Radiophysics and Quantum Electronics, 47 (2004), 769–776
[10] Lang R., Kobayashi K., “External optical feedback effects on semiconductor injection laser properties”, Quantum Electronics, 16:3 (1980), 347–355
[11] Mork J., Tromborg B., Mark J., “Chaos in semiconductor lasers with optical feedback: theory and experiment”, J. Quant. Electr., 28 (1992), 93–108
[12] Tartwijk G., Lenstra D., “Semiconductor lasers with optical injection and feedback”, Quantum. Semiclass. Opt., 7 (1995), 87–143
[13] Jun Y., Hua L., McInerney J. G., “Period-doubling route to chaos in a semiconductor laser with weak optical feedback”, Phys. Rev. A, 47 (1993), 2249–2252
[14] Fischer I., Hess O., Elsasser W., Gobel E., “High-dimensional chaotic dynamics of an external cavity semiconductor laser”, Phys. Rev. Lett., 73 (1994), 2188–2191
[15] Sano T., “Antimode dynamics and chaotic itinerancy in the coherent collapse of semiconductor lasers with optical feedback”, Phys. Rev. A, 50 (1994), 2719–2726
[16] Ritter A., Haug H., “Theory of laser diodes with weak optical feedback. I: Small-signal analysis and side-mode spectra”, JOSA B, 10 (1993), 130–144
[17] Heil T., Fischer I., Elsasser W., “Influence of amplitude-phase coupling on the dynamics of semiconductor lasers subject to optical feedback”, Phys. Rev. A, 60 (1999), 634–640
[18] Huyet G., Balle S., Giudici M., Green C., Giacomelli G., Tredicce J. R., “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback”, Opt. Commun., 149 (1999), 341–347
[19] Levine A. M., Tartwijk G. H. M., Lenstra D., Erneux T., “Diode lasers with optical feedback: Stability of the maximum gain mode”, Phys. Rev. A, 52 (1995), 3436–3439
[20] Lythe G., Erneux T., “Low pump limit of the bifurcation to periodic intensities in a semiconductor laser subject to external optical feedback”, Phys. Rev. A, 55 (1997), 4443–4448
[21] Grigorieva E. V., “Quasiperiodicity in Lang–Kobayashi model of lasers with delayed optical feedback”, Nonlinear Phenomena in Complex Systems, 4 (2001), 333–340
[22] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973 (in Russian) | MR
[23] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer, 1996 | MR | Zbl