Stability of CW solutions of semiconductor laser with large delay
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 420-438.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the problem of existence and stability of continuous waves in a semiconductor laser model is studied. This model was proposed by Lang and Kobayashi and has the form of two differential equations with delay. The delay time is assumed to be large. We study the existence of continuous waves in the Lang–Kobayashi model. A special set $ I $ depending on all parameters of the problem is built. The condition of existence of continuous waves is that the “main parts” of solutions must be located on the set $ I $. Sufficient conditions of stability and instability of continuous waves are found for all sufficiently large values of delay. In the case of a zero linewidth enhancement factor the necessary and sufficient conditions of stability are found. Location of stability regions on the sets $ I $ is studied. It is proved that in the case of the zero linewidth enhancement factor the number of regions of stability on the set $ I $ is less than two. Necessary and sufficient conditions of existence of stability regions on the set $ I $ are found in this case.
Keywords: Lang Kobayashi equation, large delay, laser dynamics, stability.
@article{MAIS_2015_22_3_a6,
     author = {A. A. Kashchenko},
     title = {Stability of {CW} solutions of semiconductor laser with large delay},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {420--438},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/}
}
TY  - JOUR
AU  - A. A. Kashchenko
TI  - Stability of CW solutions of semiconductor laser with large delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 420
EP  - 438
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/
LA  - ru
ID  - MAIS_2015_22_3_a6
ER  - 
%0 Journal Article
%A A. A. Kashchenko
%T Stability of CW solutions of semiconductor laser with large delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 420-438
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/
%G ru
%F MAIS_2015_22_3_a6
A. A. Kashchenko. Stability of CW solutions of semiconductor laser with large delay. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 420-438. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a6/

[1] Kashchenko A. A., “Stability of the Simplest Periodic Solutions in the Stuart-Landau Equation with Large Delay”, Automatic Control and Computer Sciences, 47:7 (2013), 566–570

[2] Kashchenko A. A., “Ustoychivost nepreryvnykh voln dlya modeli FDML lazera”, Modelirovanie i analiz informatsionnykh sistem, 21:3 (2014), 35–54 (in Russian)

[3] Kashchenko A., “Stability of continuous wave solutions of one laser model with large delay”, Regular and Chaotic Dynamics, 20:2 (2015), 173–183 | MR | Zbl

[4] Reddy D. V. R., Sen A., Johnston G. L., “Time delay effects on coupled limit cycle oscillators at Hopf bifurcation”, Physica D, 129 (1999), 15–34 | MR | Zbl

[5] Reddy D. V. R., Sen A., Johnston G. L., “Dynamics of a limit cycle oscillator under time delayed linear and nonlinear feedbacks”, Physica D, 144 (2000), 335–357 | MR | Zbl

[6] Slepneva S., Kelleher B., O'Shaughnessy B., Hegarty S. P., Vladimirov A. G., Huyet G., “Dynamics of Fourier domain mode-locked lasers”, Opt. Express, 21 (2013), 19240–19251

[7] Vladimirov A. G., Turaev D., “Model for passive mode-locking in semiconductor lasers”, Phys. Rev. A, 72 (2005), 033808

[8] Vladimirov A., Turaev D., Kozyreff G., “Delay differential equations for mode-locked semiconductor lasers”, Opt. Lett., 29 (2004), 1221–1223

[9] Vladimirov A., Turaev D., “A new model for a mode-locked semiconductor laser”, Radiophysics and Quantum Electronics, 47 (2004), 769–776

[10] Lang R., Kobayashi K., “External optical feedback effects on semiconductor injection laser properties”, Quantum Electronics, 16:3 (1980), 347–355

[11] Mork J., Tromborg B., Mark J., “Chaos in semiconductor lasers with optical feedback: theory and experiment”, J. Quant. Electr., 28 (1992), 93–108

[12] Tartwijk G., Lenstra D., “Semiconductor lasers with optical injection and feedback”, Quantum. Semiclass. Opt., 7 (1995), 87–143

[13] Jun Y., Hua L., McInerney J. G., “Period-doubling route to chaos in a semiconductor laser with weak optical feedback”, Phys. Rev. A, 47 (1993), 2249–2252

[14] Fischer I., Hess O., Elsasser W., Gobel E., “High-dimensional chaotic dynamics of an external cavity semiconductor laser”, Phys. Rev. Lett., 73 (1994), 2188–2191

[15] Sano T., “Antimode dynamics and chaotic itinerancy in the coherent collapse of semiconductor lasers with optical feedback”, Phys. Rev. A, 50 (1994), 2719–2726

[16] Ritter A., Haug H., “Theory of laser diodes with weak optical feedback. I: Small-signal analysis and side-mode spectra”, JOSA B, 10 (1993), 130–144

[17] Heil T., Fischer I., Elsasser W., “Influence of amplitude-phase coupling on the dynamics of semiconductor lasers subject to optical feedback”, Phys. Rev. A, 60 (1999), 634–640

[18] Huyet G., Balle S., Giudici M., Green C., Giacomelli G., Tredicce J. R., “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback”, Opt. Commun., 149 (1999), 341–347

[19] Levine A. M., Tartwijk G. H. M., Lenstra D., Erneux T., “Diode lasers with optical feedback: Stability of the maximum gain mode”, Phys. Rev. A, 52 (1995), 3436–3439

[20] Lythe G., Erneux T., “Low pump limit of the bifurcation to periodic intensities in a semiconductor laser subject to external optical feedback”, Phys. Rev. A, 55 (1997), 4443–4448

[21] Grigorieva E. V., “Quasiperiodicity in Lang–Kobayashi model of lasers with delayed optical feedback”, Nonlinear Phenomena in Complex Systems, 4 (2001), 333–340

[22] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya resheniy singulyarno vozmushchennykh uravneniy, Nauka, M., 1973 (in Russian) | MR

[23] Wu J., Theory and Applications of Partial Functional Differential Equations, Springer, 1996 | MR | Zbl