Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2015_22_3_a0, author = {I. Ovsyannikov and D. Turaev and S. Zelik}, title = {Bifurcation to chaos in the {\cyrs}omplex {Ginzburg--Landau} equation with large third-order dispersion}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {327--336}, publisher = {mathdoc}, volume = {22}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/} }
TY - JOUR AU - I. Ovsyannikov AU - D. Turaev AU - S. Zelik TI - Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion JO - Modelirovanie i analiz informacionnyh sistem PY - 2015 SP - 327 EP - 336 VL - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/ LA - en ID - MAIS_2015_22_3_a0 ER -
%0 Journal Article %A I. Ovsyannikov %A D. Turaev %A S. Zelik %T Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion %J Modelirovanie i analiz informacionnyh sistem %D 2015 %P 327-336 %V 22 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/ %G en %F MAIS_2015_22_3_a0
I. Ovsyannikov; D. Turaev; S. Zelik. Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 327-336. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/
[1] Afraimovich V. S., Gonchenko S. V., Lerman L., Shilnikov A., Turaev D., “Scientific heritage of L. P. Shilnikov”, Regul. Chaotic Dyn., 19 (2014), 435–460 | MR | Zbl
[2] Arneodo A., Coullet P. H., Spiegel E. A., Tresser C., “Asymptotic Chaos”, Physica D, 14 (1985), 327–347 | MR | Zbl
[3] Arneodo A., Coullet P. H., Spiegel E. A., “The dynamics of triple convection”, Geophys. Astrophys. Fluid Dyn., 31 (1985), 1–48 | Zbl
[4] Ibanez S., Rodriguez J. A., “Shilnikov configurations in any generic unfolding of the nilpotent singularity of codimension three on $R^3$”, J. Differential Equations, 208 (2005), 147–175 | MR | Zbl
[5] Kostianko A., Titi E., Zelik S., Large dispersion, averaging, and attractors: three 1D paradigms, Preprint, 2014
[6] Shilnikov L. P., “A case of the existence of a countable number of periodic motions”, Soviet Math. Dokl., 6 (1965), 163–166
[7] Shilnikov L. P., “A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type”, Math. USSR-Sb., 10 (1970), 91–102 | Zbl
[8] Turaev D., Zelik S., “Analytical proof of space-time chaos in Ginzburg–Landau Equations”, Discrete Contin. Dyn. Syst., 28 (2010), 1713–1751 | MR | Zbl