Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 327-336.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an analytic proof of the existence of Shilnikov chaos in complex Ginzburg–Landau equation subject to a large third-order dispersion perturbation.
Keywords: Ginzburg–Landau equation.
Mots-clés : bifurcations, chaos
@article{MAIS_2015_22_3_a0,
     author = {I. Ovsyannikov and D. Turaev and S. Zelik},
     title = {Bifurcation to chaos in the {\cyrs}omplex {Ginzburg--Landau} equation with large third-order dispersion},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {327--336},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/}
}
TY  - JOUR
AU  - I. Ovsyannikov
AU  - D. Turaev
AU  - S. Zelik
TI  - Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 327
EP  - 336
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/
LA  - en
ID  - MAIS_2015_22_3_a0
ER  - 
%0 Journal Article
%A I. Ovsyannikov
%A D. Turaev
%A S. Zelik
%T Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 327-336
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/
%G en
%F MAIS_2015_22_3_a0
I. Ovsyannikov; D. Turaev; S. Zelik. Bifurcation to chaos in the сomplex Ginzburg--Landau equation with large third-order dispersion. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 3, pp. 327-336. http://geodesic.mathdoc.fr/item/MAIS_2015_22_3_a0/

[1] Afraimovich V. S., Gonchenko S. V., Lerman L., Shilnikov A., Turaev D., “Scientific heritage of L. P. Shilnikov”, Regul. Chaotic Dyn., 19 (2014), 435–460 | MR | Zbl

[2] Arneodo A., Coullet P. H., Spiegel E. A., Tresser C., “Asymptotic Chaos”, Physica D, 14 (1985), 327–347 | MR | Zbl

[3] Arneodo A., Coullet P. H., Spiegel E. A., “The dynamics of triple convection”, Geophys. Astrophys. Fluid Dyn., 31 (1985), 1–48 | Zbl

[4] Ibanez S., Rodriguez J. A., “Shilnikov configurations in any generic unfolding of the nilpotent singularity of codimension three on $R^3$”, J. Differential Equations, 208 (2005), 147–175 | MR | Zbl

[5] Kostianko A., Titi E., Zelik S., Large dispersion, averaging, and attractors: three 1D paradigms, Preprint, 2014

[6] Shilnikov L. P., “A case of the existence of a countable number of periodic motions”, Soviet Math. Dokl., 6 (1965), 163–166

[7] Shilnikov L. P., “A contribution to the problem of the structure of an extended neighbourhood of a rough equilibrium state of saddle-focus type”, Math. USSR-Sb., 10 (1970), 91–102 | Zbl

[8] Turaev D., Zelik S., “Analytical proof of space-time chaos in Ginzburg–Landau Equations”, Discrete Contin. Dyn. Syst., 28 (2010), 1713–1751 | MR | Zbl