The existence of triple factorizations for sporadic groups of~rank~3
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 219-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite group $G$ with proper subgroups $A$ and $B$ has triple factorization $G = ABA$ if every element $g$ of $G$ can be represented as $g = aba'$, where $a$ and $a'$ are from $A$ and $b$ is from $B$. Such a triple factorization may be sometimes degenerate to $AB$-factorization. The task of finding triple factorizations for a group is fundamental and can be used for understanding the group structure. For instance, every simple finite group of Lie type has a natural factorization of such a type. Besides, the triple factorization is widely used in the study of graphs, geometries and varieties. The goal of this article is to find triple factorizations for sporadic groups of rank $3$. We have proved the existence theorem of $ABA$-factorization for sporadic simple groups $McL$ and $Fi_{22}$. There exist two rank $3$ permutation representations of $Fi_{22}$. We have proved that $ABA$-factorizations exist in both cases.
Keywords: group factorization, sporadic groups, McLaughlin group, Fisher group.
@article{MAIS_2015_22_2_a5,
     author = {L. S. Kazarin and I. A. Rassadin and D. N. Sakharov},
     title = {The existence of triple factorizations for sporadic groups of~rank~3},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {219--237},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a5/}
}
TY  - JOUR
AU  - L. S. Kazarin
AU  - I. A. Rassadin
AU  - D. N. Sakharov
TI  - The existence of triple factorizations for sporadic groups of~rank~3
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 219
EP  - 237
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a5/
LA  - ru
ID  - MAIS_2015_22_2_a5
ER  - 
%0 Journal Article
%A L. S. Kazarin
%A I. A. Rassadin
%A D. N. Sakharov
%T The existence of triple factorizations for sporadic groups of~rank~3
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 219-237
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a5/
%G ru
%F MAIS_2015_22_2_a5
L. S. Kazarin; I. A. Rassadin; D. N. Sakharov. The existence of triple factorizations for sporadic groups of~rank~3. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 2, pp. 219-237. http://geodesic.mathdoc.fr/item/MAIS_2015_22_2_a5/

[1] Zagorin D. L., Kazarin L. S., “Abelevy ABA-faktorizacii konechnyh grupp”, Dokl. Akad. Nauk, 347 (1996), 590–592 (in Russian) | MR | Zbl

[2] Alavi S. H., Praeger C. E., “On triple factorizations of finite groups”, Journal of Group Theory, 14 (2010), 341–360 | MR

[3] Amberg B., Kazarin L. S., “ABA-groups with cyclic subgroup B”, Tr. IMM UrO RAN, 18, no. 3, 2012, 10–22

[4] Conway J. H., Curtis R. T., Norton S. P., Parker R. A., Wilson R. A., ATLAS of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985 | MR | Zbl

[5] Giudici M., “Factorizations of sporadic simple groups”, Journal of Algebra, 304 (2006), 311–323 | DOI | MR | Zbl

[6] Gorenstein D., Finite Simple Groups. An Introduction to Their Classification, Plenum Press, New York–London, 1982 | MR | Zbl

[7] Gorenstein D., “On finite groups of the form ABA”, Can. J. Math., 14 (1962), 195–236 | MR | Zbl

[8] Gorenstein D., Herstein I. N., “A class of solvable groups”, Can. J. Math., 11 (1959), 311–320 | DOI | MR | Zbl

[9] Guterman M., “On ABA-groups of finite order”, Trans. Amer. Math. Soc., 139 (1969), 109–143 | MR | Zbl

[10] Wilson R., Walsh P., Tripp J., Suleiman I., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R., ATLAS of Finite Group Representations, Version 3, , 2005 http://brauer.maths.qmul.ac.uk/Atlas/v3/

[11] Wilson R., Walsh P., Tripp J., Suleiman I., Rogers S., Parker R., Norton S., Nickerson S., Linton S., Bray J., Abbott R., ATLAS of Finite Group Representations, Version 2, , 1999 http://brauer.maths.qmul.ac.uk/Atlas/

[12] Sysak Ya. P., “Finite groups of the form ABA”, Algebra and Logic, 21:3 (1982), 234–241 | DOI | MR

[13] Strunkov S. P., Vvedenie v teoriju linejnyh predstavlenij konechnyh grupp, MIFI, 1993 (in Russian)

[14] Sysak Ja. P., “Konechnye ABA-gruppy s abelevoj p-podgruppoj A i ciklicheskoj p-podgruppoj B”, Gruppy i sistemy ih podgrupp, 1983, 31–42 (in Russian) | MR | Zbl

[15] Sysak Ja. P., “O stroenii konechnyh ABA-grupp s abelevoj podgruppoj A i ciklicheskoj podgruppoj B”, Stroenie grupp i ih podgruppovaja organizacija, 1984, 33–46 (in Russian) | MR | Zbl

[16] Sysak Ja. P., “Konechnye ABA-gruppy s abelevymi p-podgruppami A i B”, Ukr. Mat. Zhurn., 40:3 (1988), 356–361 (in Russian) | MR | Zbl

[17] Syskin S. A., “Abstraktnye svojstva prostyh sporadicheskih grupp”, Uspehi matematicheskih nauk, 35:5(215) (1980), 181–212 (in Russian) | MR | Zbl