Dissipative structures of the Kuramoto--Sivashinsky equation
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 105-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we study the features of dissipative structures formation described by the periodic boundary value problem for the Kuramoto-Sivashinsky equation. The numerical algorithm which is based on the pseudospectral method is presented. We prove the efficiency and accuracy of the proposed numerical method on the exact solution of the equation considered. Using this approach, we performed the numerical simulation of dissipative structure formations described by the Kuramoto–Sivashinsky equation. The influence of the problem parameters on these processes are studied. The quantitative and qualitative characteristics of dissipative structure formations are described. We have shown that there is a value of the control parameter at which the processes of dissipative structure formation are observed. In particular, using the cyclic convolution we define the average value of this parameter. Also, we find the dependence of the amplitude of the structures on the value of control parameter.
Keywords: Kuramoto–Sivashinsky equation, self–organization, patterns, pseudospectral method, numerical simulation.
@article{MAIS_2015_22_1_a6,
     author = {N. A. Kudryashov and P. N. Ryabov and B. A. Petrov},
     title = {Dissipative structures of the {Kuramoto--Sivashinsky} equation},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {105--113},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a6/}
}
TY  - JOUR
AU  - N. A. Kudryashov
AU  - P. N. Ryabov
AU  - B. A. Petrov
TI  - Dissipative structures of the Kuramoto--Sivashinsky equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 105
EP  - 113
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a6/
LA  - ru
ID  - MAIS_2015_22_1_a6
ER  - 
%0 Journal Article
%A N. A. Kudryashov
%A P. N. Ryabov
%A B. A. Petrov
%T Dissipative structures of the Kuramoto--Sivashinsky equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 105-113
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a6/
%G ru
%F MAIS_2015_22_1_a6
N. A. Kudryashov; P. N. Ryabov; B. A. Petrov. Dissipative structures of the Kuramoto--Sivashinsky equation. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a6/

[1] Y. Kuramoto, T. Tsuzuki, “Persistent propagation of concentration waves in dissipative media far from thermal equilibrium”, Progress.Theor. Phys., 55:2 (1976), 356–359 | DOI

[2] G. I. Sivashinsky, “Instability, pattern formation and turbulence in flames”, Ann. Rev. Fluid Mech., 15 (1983), 179–199 | DOI

[3] N. A. Kudryashov, P. N. Ryabov, T. E. Fedyanin, A. A. Kutukov, “Evolution of pattern formation under ion bombardment of substrate”, Physics Letters A, 377 (2013), 753–759 | DOI

[4] J. Topper, T. Kawahara, “Approximate equations for long nonlinear waves on a viscous fluid”, J. Phys. Soc. Japan, 44:2 (1978), 663–666 | DOI

[5] N. A. Kudryashov, “Exact soliton solutions of the generalized evolution equation of wave dynamics”, J. Appl. Math. Mech., 52 (1988), 361–365 | DOI

[6] N. A. Kudryashov, “Exact solutions of the generalized Kuramoto–Sivashinsky equation”, Phys. Letters A, 147:5–6 (1990), 287–291 | DOI

[7] A. A. Alekseev, N. A. Kudryashov, “Properties of nonlinear waves in dissipative-dispersive media with instability”, Fluid Dynamics, 25:4 (1990), 604–610 | DOI

[8] N. A. Kudryashov, A. V. Migita, “Periodic structures developing with account for dispersion in a turbulence model”, Fluid Dynamics, 42:3 (2007), 463–471 | DOI

[9] N. A. Kudryashov, P. N. Ryabov, “Properties of nonlinear waves in an active–dissipative dispersive medium”, Fluid Dynamics, 46:3 (2011), 425–432 | DOI

[10] N. A. Kudryshov, P. N. Ryabov, D. I. Sinelshchikov, “Nonlinear waves in media with fifth order dispersion”, Physics Letters A, 375 (2011), 2051–2055 | DOI

[11] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, Philadelphia, 2000

[12] T. Y. Hou, R. Li, “Computing nearly singular solutions using pseudo-spectral methods”, Journal of Computational Physics, 226 (2007), 279–297 | DOI

[13] A. Hala, Numerical methods for stiff systems, University of Nottingham, 2008

[14] A.-K. Kassam, L. N. Trefethen, “Fourth-order time-stepping for stiff PDEs”, SIAM J. Sci. Comput., 26:4 (2005), 1214–1233 | DOI

[15] J. P. Boyd, Chebyshev and Fourier Spectral Methods, DOVER Publications Inc., Mineola, New York, 2000