Blue sky catastrophe in systems with non-classical relaxation oscillations
Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 38-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

The feasibility of a known blue-sky bifurcation in a class of three-dimensional singularly perturbed systems of ordinary differential equations with one fast and two slow variables is studied. A characteristic property of the considered systems is that they permit so-called nonclassic relaxation oscillations, that is, oscillations with slow components asymptotically close to time-discontinuous functions and a $\delta$-like fast component. Cases when blue-sky bifurcation leads to a relaxation cycle or stable two-dimensional torus are analyzed. Also the question of homoclinic structure emergence is considered.
Keywords: singularly perturbed system, relaxation cycle, asymptotic behavior, stability, non-classical relaxation oscillations.
Mots-clés : blue sky catastrophe
@article{MAIS_2015_22_1_a2,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Blue sky catastrophe in systems  with non-classical relaxation oscillations},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {38--64},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a2/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Blue sky catastrophe in systems  with non-classical relaxation oscillations
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2015
SP  - 38
EP  - 64
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a2/
LA  - ru
ID  - MAIS_2015_22_1_a2
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Blue sky catastrophe in systems  with non-classical relaxation oscillations
%J Modelirovanie i analiz informacionnyh sistem
%D 2015
%P 38-64
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a2/
%G ru
%F MAIS_2015_22_1_a2
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Blue sky catastrophe in systems  with non-classical relaxation oscillations. Modelirovanie i analiz informacionnyh sistem, Tome 22 (2015) no. 1, pp. 38-64. http://geodesic.mathdoc.fr/item/MAIS_2015_22_1_a2/

[1] D. V. Turaev, L. P. Shilnikov, “Blue sky catastrophes”, Dokl. Math., 51 (1995), 404–407

[2] A. Shilnikov, L. Shilnikov, D. Turaev, Blue sky catastrophe in singularly-perturbed systems, Preprint WIAS No 841, Berlin, 2003

[3] A. Shilnikov, L. Shilnikov, D. Turaev, “Blue-sky catastrophe in singularly perturbed systems”, Moscow Mathematical Journal, 5:1 (2005), 269–282

[4] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Blue Sky Catastrophe in Relaxation Systems with One Fast and Two Slow Variables”, Differential Equations, 44:2 (2008), 161–175 | DOI

[5] E. F. Mishchenko, N. Kh. Rozov, Differential equations with small parameters and relaxation oscillations, Plenum Press, New York, 1980

[6] E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Asymptotic methods in singularly perturbed systems, Consult. Bureau, Plenum Publ. Corp., New York, 1994

[7] D. V. Anosov, “On limit cycles in systems of differential equations with a small parameter in the highest derivatives”, AMS Translations. Ser. 2, 33 (1963), 233–275

[8] Strygin V. V., Sobolev V. A., Razdeleniye dvizheniy metodom integral'nykh mnogoobraziy, Nauka, M., 1988 (in Russian)

[9] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Separation of Motions in a Neighborhood of a Semistable Cycle”, Differential Equations, 43:5 (2007), 613–630 | DOI

[10] L. Shilnikov, A. Shilnikov, D. Turaev, L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, v. I, World Scientific, Singapore, 1998

[11] Kolesov A. Yu., Rozov N. Kh., Invariantnyye tory nelineynykh volnovykh uravneniy, Fizmatlit, M., 2004 (in Russian)