Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_5_a4, author = {E. P. Kubishkin and M. S. Triakhov}, title = {Optimal behavior control of an initial-boundary problem solution modelling rotation of a solid body with the flexible rod}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {78--92}, publisher = {mathdoc}, volume = {21}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a4/} }
TY - JOUR AU - E. P. Kubishkin AU - M. S. Triakhov TI - Optimal behavior control of an initial-boundary problem solution modelling rotation of a solid body with the flexible rod JO - Modelirovanie i analiz informacionnyh sistem PY - 2014 SP - 78 EP - 92 VL - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a4/ LA - ru ID - MAIS_2014_21_5_a4 ER -
%0 Journal Article %A E. P. Kubishkin %A M. S. Triakhov %T Optimal behavior control of an initial-boundary problem solution modelling rotation of a solid body with the flexible rod %J Modelirovanie i analiz informacionnyh sistem %D 2014 %P 78-92 %V 21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a4/ %G ru %F MAIS_2014_21_5_a4
E. P. Kubishkin; M. S. Triakhov. Optimal behavior control of an initial-boundary problem solution modelling rotation of a solid body with the flexible rod. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 78-92. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a4/
[1] Beryuk V. E., Dinamika i optimizatsiya robototekhnicheskikh sistem, Naukova Dumka, Kiev, 1989
[2] Ye. P. Kubyshkin, “Optimal control of the rotation of a solid with a flexible rod”, Journal of Applied Mathematics and Mechanics, 56:2 (1992), 205–214
[3] W. Krabs, N. Chi-Long, “On the Controllability of a Robot Arm”, Mathematical Methods in the Applied Sciences, 21 (1998), 25–42
[4] N. I. Akhiezer, I. M. Glazman, Theory of linear operators in Hilbert space, 2 ed., Dover, 1993, 377 pp.
[5] Vibratsii v tekhnike: Spravochnik, M., 1978, 362 pp.
[6] M. G. Krein, A. A. Nudelman, The Markov moment problem and extremal problems. Ideas and problems of P. L. Chebyshev and A. A. Markov and their further development, Translations of Mathematical Monographs, v. 50, American Mathematical Society, Providence, R.I., 1977, 417 pp.
[7] B. Z. Vulikh, Introduction to Functional Analysis for Scientists and Technologists, Elsevier Science and Technology, 1963, 404 pp.