Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing coeffcients.~II
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 5-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the asymptotic integration problem in the neighborhood of infnity for a certain class of linear functional differential systems. We construct the asymptotics for the solutions of the considered systems in a critical case. In the second part of the work we establish the existence of a critical manifold for the considered class of systems and study its main properties. We also investigate the asymptotic integration problem for a reduced system. We illustrate the proposed method with an example of constructing the asymptotics for the solutions of a certain scalar delay differential equation.
Keywords: functional-differential equations, critical manifold, asymptotic integration, averaging method, Levinson's theorem.
@article{MAIS_2014_21_5_a0,
     author = {P. N. Nesterov},
     title = {Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing {coeffcients.~II}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {5--37},
     publisher = {mathdoc},
     volume = {21},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a0/}
}
TY  - JOUR
AU  - P. N. Nesterov
TI  - Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing coeffcients.~II
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 5
EP  - 37
VL  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a0/
LA  - ru
ID  - MAIS_2014_21_5_a0
ER  - 
%0 Journal Article
%A P. N. Nesterov
%T Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing coeffcients.~II
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 5-37
%V 21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a0/
%G ru
%F MAIS_2014_21_5_a0
P. N. Nesterov. Center manifold method in the asymptotic integration problem for functional differential equations with oscillatory decreasing coeffcients.~II. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 5, pp. 5-37. http://geodesic.mathdoc.fr/item/MAIS_2014_21_5_a0/

[1] Bellman R., Stability theory of differential equations, McGraw–Hill, New York, 1953

[2] Burd V. Sh., Karakulin V. A., “On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coeffcients”, Math. Notes, 64:5 (1998), 571–578

[3] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw–Hill, New York, 1955

[4]

[5] Nesterov P. N., “Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coeffcients”, Differ. Equ., 43:6 (2007), 745–756

[6] Hartman P., Ordinary Differential Equations, John Wiley Sons, Inc., New York, 1964

[7] Hale J. K., Theory of functional differential equations, Springer-Verlag, New York, 1977

[8] Ait Babram M., Hbid M. L., Arino O., “Approximation scheme of a center manifold for functional differential equations”, J. Math. Anal. Appl., 213 (1997), 554–572

[9] Carr J., Applications of centre manifold theory, Springer-Verlag, New York, 1981

[10] Castillo S., Pinto M., “Asymptotic integration of ordinary different systems”, J. Math. Anal. Appl., 218:1 (1998), 1–12

[11] Coppel W. A., Stability and asymptotic behavior of differential equations, D.C. Heath and Co., Boston, 1965

[12] Devinatz A., “The asymptotic nature of the solutions of certain linear systems of differential equations”, Pacific J. Math., 15:1 (1965), 75–83

[13] Eastham M. S. P., The asymptotic solution of linear differential systems, London Math. Soc. Monographs, Clarendon Press, Oxford, 1989

[14] Hale J., Verduyn Lunel S. M., Introduction to functional differential equations, Appl. Math. Sciences 99, Springer-Verlag, New York, 1993

[15] Harris Jr. W. A., Lutz D. A., “Asymptotic integration of adiabatic oscillators”, J. Math. Anal. Appl., 51 (1975), 76–93

[16] Kolmanovskii V., Myshkis A., Introduction to the theory and applications of functional differential equations, Kluwer Academic Publishers, Dordrecht, 1999

[17] Nesterov P., “Method of averaging for systems with main part vanishing at infinity”, Math. Nachr., 284:11-12 (2011), 1496–1514