On the Variety of Paths on Complete Intersections in Grassmannians
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we study the Fano variety of lines on the complete intersection of the grassmannian $G(n,2n)$ with hypersurfaces of degrees $d_1,...,d_i$. A length $l$ path on such a variety is a connected curve composed of $l$ lines. The main result of this article states that the space of length $l$ paths connecting any two given points on the variety is non-empty and connected if $\sum d_j\frac{n}{4}$. To prove this result we first show that the space of length $n$ paths on the grassmannian $G(n,2n)$ that join two generic points is isomorphic to the direct product $F_n\times F_n$ of spaces of full flags. After this we construct on $F_n\times F_n$ a globally generated vector bundle $\mathcal E$ with a distinguished section $s$ such that the zeros of $s$ coincide with the space of length $n$ paths that join $x$ and $y$ and lie in the intersection of hypersurfaces of degrees $d_1$,...,$d_k$. Using a presentation of $\mathcal E$ as a sum of linear bundles we show that zeros of its generic and, hence, any section form a non empty connected subvariety of $F_n\times F_n$. Apart from its immediate geometric interest, this result will be used in our future work on generalisation of splitting theorems for finite rank vector bundles on ind-manifolds.
Keywords: grassmannian, vector bundle, Fano variety of lines.
@article{MAIS_2014_21_4_a3,
     author = {S. M. Yermakova},
     title = {On the {Variety} of {Paths} on {Complete} {Intersections} in {Grassmannians}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {21},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a3/}
}
TY  - JOUR
AU  - S. M. Yermakova
TI  - On the Variety of Paths on Complete Intersections in Grassmannians
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 35
EP  - 46
VL  - 21
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a3/
LA  - ru
ID  - MAIS_2014_21_4_a3
ER  - 
%0 Journal Article
%A S. M. Yermakova
%T On the Variety of Paths on Complete Intersections in Grassmannians
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 35-46
%V 21
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a3/
%G ru
%F MAIS_2014_21_4_a3
S. M. Yermakova. On the Variety of Paths on Complete Intersections in Grassmannians. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 35-46. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a3/

[1] D. Eisenbud, J. Harris, 3264 All That Intersection Theory in Algebraic Geometry, , 2013 http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf

[2] W. Barth, A. Van de Ven, “On the geometry in codimension 2 in Grassmann manifolds”, Lecture Notes in Math., 412, Springer-Verlag, 1974, 1–35 | DOI | MR

[3] A. N. Tyurin, “Vector bundles of finite rank over infinite varieties”, Math. USSR. Izvestija, 10:6 (1976), 1187–1204 | DOI

[4] E. Sato, “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties”, J. Math. Kyoto Univ., 17 (1977), 127–150 | MR | Zbl

[5] J. Donin, I. Penkov, “Finite rank vector bundles on inductive limits of grassmannians”, IMRN, 2003, no. 34, 1871–1887 | DOI | MR | Zbl

[6] I. Penkov, A. S. Tikhomirov, “Rank-2 vector bundles on ind-Grassmannians”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser, Boston–Basel–Berlin, 2009, 555–572 | MR | Zbl

[7] I. B. Penkov, A. S. Tikhomirov, “Triviality of vector bundles on twisted ind-Grassmannians”, Sbornik: Mathematics, 202:1 (2011), 61–99 | DOI | DOI | MR | Zbl

[8] I. Penkov, A. S. Tikhomirov, On the Barth–Van de Ven–Tyurin–Sato theorem, arXiv: 1405.3897[math.AG]

[9] I. Penkov, A. S. Tikhomirov, “Linear ind-grassmannians”, Pure and Applied Mathematics Quarterly, 10:1 (2014), arXiv: 1310.8054[math.AG]

[10] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977 | MR | Zbl