Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2014_21_4_a3, author = {S. M. Yermakova}, title = {On the {Variety} of {Paths} on {Complete} {Intersections} in {Grassmannians}}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {35--46}, publisher = {mathdoc}, volume = {21}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a3/} }
S. M. Yermakova. On the Variety of Paths on Complete Intersections in Grassmannians. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 4, pp. 35-46. http://geodesic.mathdoc.fr/item/MAIS_2014_21_4_a3/
[1] D. Eisenbud, J. Harris, 3264 All That Intersection Theory in Algebraic Geometry, , 2013 http://isites.harvard.edu/fs/docs/icb.topic720403.files/book.pdf
[2] W. Barth, A. Van de Ven, “On the geometry in codimension 2 in Grassmann manifolds”, Lecture Notes in Math., 412, Springer-Verlag, 1974, 1–35 | DOI | MR
[3] A. N. Tyurin, “Vector bundles of finite rank over infinite varieties”, Math. USSR. Izvestija, 10:6 (1976), 1187–1204 | DOI
[4] E. Sato, “On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties”, J. Math. Kyoto Univ., 17 (1977), 127–150 | MR | Zbl
[5] J. Donin, I. Penkov, “Finite rank vector bundles on inductive limits of grassmannians”, IMRN, 2003, no. 34, 1871–1887 | DOI | MR | Zbl
[6] I. Penkov, A. S. Tikhomirov, “Rank-2 vector bundles on ind-Grassmannians”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser, Boston–Basel–Berlin, 2009, 555–572 | MR | Zbl
[7] I. B. Penkov, A. S. Tikhomirov, “Triviality of vector bundles on twisted ind-Grassmannians”, Sbornik: Mathematics, 202:1 (2011), 61–99 | DOI | DOI | MR | Zbl
[8] I. Penkov, A. S. Tikhomirov, On the Barth–Van de Ven–Tyurin–Sato theorem, arXiv: 1405.3897[math.AG]
[9] I. Penkov, A. S. Tikhomirov, “Linear ind-grassmannians”, Pure and Applied Mathematics Quarterly, 10:1 (2014), arXiv: 1310.8054[math.AG]
[10] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977 | MR | Zbl