Calculating Lyapunov Value for the Logistic Equation with Rapidly Oscillating Delay
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 121-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the local dynamic of the logistic equation with rapidly oscillating time-periodic piecewise constant or piecewise linear coefficient of delay. It was shown that the averaged equation is a logistic equation with two delays in first case and logistic equation with distributed delay in second case. The criterion of equilibrium point stability was obtained in both cases. Dynamical properties of the original equation were considered in the critical case of equilibrium point of averaged equation stability problem. It was shown, that local dynamic in the critical case is defined by Lyapunov value whose sign depends on the parameters of the problem.
Keywords: averaging, stability, nonlinear dynamics, normal form.
@article{MAIS_2014_21_3_a7,
     author = {N. D. Bykova},
     title = {Calculating {Lyapunov} {Value} for the {Logistic} {Equation} with {Rapidly} {Oscillating} {Delay}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a7/}
}
TY  - JOUR
AU  - N. D. Bykova
TI  - Calculating Lyapunov Value for the Logistic Equation with Rapidly Oscillating Delay
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 121
EP  - 128
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a7/
LA  - ru
ID  - MAIS_2014_21_3_a7
ER  - 
%0 Journal Article
%A N. D. Bykova
%T Calculating Lyapunov Value for the Logistic Equation with Rapidly Oscillating Delay
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 121-128
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a7/
%G ru
%F MAIS_2014_21_3_a7
N. D. Bykova. Calculating Lyapunov Value for the Logistic Equation with Rapidly Oscillating Delay. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 121-128. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a7/

[1] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer-Verlag, 1996 | MR

[2] N. N. Bogoliubov, Y. A. Mitropolsky, Asymptotic Methods in the Theory of Non-Linear Oscillations, Gordon and Breach, New York, 1961, 573 pp. | MR | MR

[3] Kolesov Yu. S., Kolesov V. S., Fedik I. I., Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979, 162 pp. (in Russian) | Zbl

[4] Kolesov Yu. S., Mayorov V. V., “Novyy metod issledovaniya ustoychivosti resheniy lineynykh differentsial'nykh uravneniy s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differentsialnye uravneniya, 10:10 (1974), 1778–1788 (in Russian) | MR | Zbl

[5] Kashchenko S. A., Mayorov V. V., “Algoritm issledovaniya ustoychivosti resheniy lineynykh differentsialnykh uravneniy s posledeystviem i bystro ostsilliruyushchimi koeffitsientami”, Issledovaniya po ustoychivosti i teorii kolebaniy, Yaroslavl, 1977, 70–81 (in Russian)

[6] Kaschenko S. A., “Issledovaniye ustoychivosti resheniy lineynykh parabolicheskikh uravneniy s blizkimi k postoyannym koeffitsiyentami i maloy diffuziyey”, Trudy seminara Petrovskogo, 15, 1991, 128–155 (in Russian)

[7] Bykova N. D., Glyzin S. D., Kaschenko S. A., “Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay”, Modeling and Analysis of Information Systems, 20:3 (2013), 86–98 (in Russian)

[8] Bykova N. D., Grigorieva E. V., “Applying the Averaging Principle to a Logistic Equation with Rapidly Oscillating Delay”, Modeling and Analysis of Information Systems, 21:1 (2014), 89–93 (in Russian)