On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 91-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimizing the error of a cubature formula on the classes of functions given by modulus of continuity for cubature formulas with fixed nodes on the boundary of gird rectangular localization domain of nodes is considered. We give the exact solution of this problem on the wide classes of functions of two variables. It was previously shown by N.P. Korneychuk that if the boundary nodes of a \linebreak rectangular lattice $Q_{ki}=\{\, x_{k-1}\le x\le x_{k},\, y_{i-1}\le y\le y_{i}\}$ are not included in the number of nodes cubature formula $$ \iint\limits_{(Q)}f(x,y)dxdy=\sum_{k=1}^m\sum_{i=1}^n p_{ki}f(x_k,y_i)+R_{mn}(f),\qquad\qquad\qquad\qquad\qquad\qquad\qquad(1) $$ the formula of average rectangles is the best for classes of functions $H^{\omega_{1},\omega_{2}}(Q),$  $H_{\rho_{1}}^{\omega}(Q)$  and  $H_{\rho_{2}}^{\omega}(Q)$ among all quadrature formulas of the form (1). It is proved that if into the number of nodes in the formula (1) all boundary nodes (such formulas are called Markov-type) are added, then for these classes of functions the best formula is trapezoids. The exact errors for all classes of functions are calculated.
Keywords: optimal formulas, extremal problem, formula of Markov type, modulus of continuity, error estimate.
Mots-clés : notes and coefficients
@article{MAIS_2014_21_3_a5,
     author = {M. Sh. Shabozov},
     title = {On an {Optimal} {Quadrature} {Formula} for {Classes} of {Functions} {Given} by {Modulus} of {Continuity}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {91--105},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a5/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 91
EP  - 105
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a5/
LA  - ru
ID  - MAIS_2014_21_3_a5
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 91-105
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a5/
%G ru
%F MAIS_2014_21_3_a5
M. Sh. Shabozov. On an Optimal Quadrature Formula for Classes of Functions Given by Modulus of Continuity. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 91-105. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a5/

[1] S. M. Nikol'skiĭ, Quadrature formulas, Nauka, M., 1988 | MR

[2] N. P. Korneĭchuk, “Best cubature formulas for certain classes of functions of several variables”, Matematicheskie Zametki, 3:5 (1968), 565–576 | MR | Zbl

[3] N. P. Korneĭchuk, Encyclopedia Math. Appl., 38, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl