On the Equilibrium State Stability of a Neural Network Model
Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 55-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a neural network model based on three McCulloch–Pitts adder neurons is considered. Previously, the features of the model dynamics were numerically analyzed and the stability of various dynamic modes of the network with small changes of the current state was studied, including the detection of parameters specific for the chaotic system dynamics. In the paper, the stability problem of the neural network equilibrium states (steady operating mode) is considered for different values of feedback synaptic weight coefficients. An analytic proof of the zero equilibrium state instability for the corresponding dynamic system for all parameter values of the neural network is presented as the main result of the article.
Keywords: neural network, stability.
@article{MAIS_2014_21_3_a2,
     author = {Y. V. Bogomolov},
     title = {On the {Equilibrium} {State} {Stability} of a {Neural} {Network} {Model}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {55--61},
     publisher = {mathdoc},
     volume = {21},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a2/}
}
TY  - JOUR
AU  - Y. V. Bogomolov
TI  - On the Equilibrium State Stability of a Neural Network Model
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2014
SP  - 55
EP  - 61
VL  - 21
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a2/
LA  - ru
ID  - MAIS_2014_21_3_a2
ER  - 
%0 Journal Article
%A Y. V. Bogomolov
%T On the Equilibrium State Stability of a Neural Network Model
%J Modelirovanie i analiz informacionnyh sistem
%D 2014
%P 55-61
%V 21
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a2/
%G ru
%F MAIS_2014_21_3_a2
Y. V. Bogomolov. On the Equilibrium State Stability of a Neural Network Model. Modelirovanie i analiz informacionnyh sistem, Tome 21 (2014) no. 3, pp. 55-61. http://geodesic.mathdoc.fr/item/MAIS_2014_21_3_a2/

[1] P. D. Wasserman, Neural Computing, theory and Practice, Van Nostrand Reinhold, New York, 1989

[2] Bogomolov Yu. V., “O khaoticheskom povedenii odnoy modeli neyronnoy seti”, Modelirovanie i analiz informatsionnykh sistem, 10:2 (2003), 35–40 (in Russian)

[3] Radu Dogaru, A. T. Murgan, Daniel Ioan, “Robust Oscillations and Bifurcations in Cellular Neural Networks”, Proceedings of IEEE Int. Workshop on Cellular Neural Networks and Their Applications, CNNA'94 (Rome, 1994), 297–302

[4] E. I. Jury, Innors and Stability of Dynamic Systems, Wiley, New York, 1974 | MR | Zbl